
تعداد نشریات | 8 |
تعداد شمارهها | 421 |
تعداد مقالات | 5,525 |
تعداد مشاهده مقاله | 6,352,660 |
تعداد دریافت فایل اصل مقاله | 5,473,475 |
رباتهای پوشیدنی و آینده توانبخشی; نگاهی جامع به اگزواسکلتونهای پایینتنه | ||
نشریه مهندسی مکانیک امیرکبیر | ||
دوره 57، شماره 2، 1404، صفحه 235-264 اصل مقاله (1.63 M) | ||
نوع مقاله: مقاله مروری | ||
شناسه دیجیتال (DOI): 10.22060/mej.2025.23908.7826 | ||
نویسندگان | ||
رضا حاجیان1؛ محمدحسین خالصی* 1؛ علی سلطانی شریف آبادی2 | ||
1دانشکده مهندسی مکانیک، دانشگاه سمنان، سمنان، ایران | ||
2دانشکده الکترونیک و فناوری اطلاعات، دانشگاه صنعتی ورشو، ورشو، لهستان | ||
چکیده | ||
در عصرحاضر، پیشرفتهای سریع در فناوریهای رباتیک و الکترونیکی منجر به توسعه گسترده اگزوسکلتونها به عنوان فناوریهای پیشرفته پوشیدنی شده است. این دستگاهها با ادغام حسگرها، عملگرها و الگوریتمهای هوش مصنوعی، توانستهاند نقش قابلتوجهی در بهبود کیفیت زندگی افراد دارای ناتوانیهای حرکتی، افزایش تواناییهای فیزیکی کاربران سالم و تسهیل فعالیتهای صنعتی و نظامی ایفا کنند. این مقاله با مروری جامع بر تاریخچه و تحولات اگزوسکلتونهای پایینتنه از ایدههای اولیه در قرن نوزدهم تا نمونههای پیشرفته امروزی، به بررسی روند پیشرفت، دستهبندیها و کاربردهای این سیستمها در حوزههای توانبخشی، پزشکی، صنعتی و نظامی میپردازد. تحلیل عملکردی این فناوری بر اساس اهدافی چون کاهش نیروی اینرسی بار، انتقال وزن به زمین و تقویت مفاصل انسانی نشان میدهد که علیرغم موفقیتهای چشمگیر، چالشهایی مانند هزینههای تولید بالا، پیچیدگیهای فنی و محدودیت در تطبیق با حرکات طبیعی بدن همچنان پابرجاست. همچنین، فرصتهای نوظهور در حوزههای ورزشی، هوش مصنوعی و طراحیهای کاربرمحور مورد بحث قرار گرفتهاند. یافتههای این پژوهش که مبتنی بر مرور سیستماتیک مطالعات است، میتواند به بهینهسازی طراحی، کاهش وزن و افزایش کارایی این دستگاهها کمک کند. در نهایت، مقاله چشماندازی از مسیر توسعه آینده اگزواسکلتونها ارائه میدهد و بر نقش کلیدی آنها در زندگی روزمره و پزشکی تأکید میکند. | ||
کلیدواژهها | ||
رباتهای پوشیدنی؛ توانبخشی؛ اگزواسکلتون پایینتنه؛ نیروی اینرسی؛ سیستمهای رباتیک | ||
عنوان مقاله [English] | ||
Exoskeleton Robots and the Future of Rehabilitation; A Comprehensive Review on Lower-Limb Exoskeletons | ||
نویسندگان [English] | ||
Reza Hajian1؛ Mohammad Hossein Khalesi1؛ Ali Soltani Sharif Abadi2 | ||
1Faculty of Mechanical Engineering, Semnan University, Semnan, Iran | ||
2Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland | ||
چکیده [English] | ||
In the contemporary era, rapid advancements in robotic and electronic technologies have led to the extensive development of exoskeletons as advanced wearable devices. Integrating sensors, actuators, and artificial intelligence algorithms, these devices have significantly improved the quality of life for individuals with mobility impairments, enhanced physical capabilities for healthy users, and facilitated various industrial and military activities. This paper provides a comprehensive review of the historical evolution and progress of lower-limb exoskeletons, tracing their development from initial concepts in the 19th century to today's sophisticated models. The paper further examines the development trends, classifications, and applications of these systems within rehabilitation, medical, industrial, and military contexts. A functional analysis of the technology, focusing on objectives such as reducing inertial load forces, transferring weight to the ground, and enhancing human joint strength, reveals notable successes alongside ongoing challenges, including high production costs, technical complexity, and limitations in mimicking natural body movements. Additionally, emerging opportunities in fields such as sports, artificial intelligence, and user-centered design are discussed. Findings from this systematic review can aid in optimizing design, reducing device weight, and enhancing efficiency. Ultimately, the paper presents a future-oriented perspective on exoskeleton development, emphasizing their crucial role in everyday life and medical practices. | ||
کلیدواژهها [English] | ||
Exoskeleton Robots, Rehabilitation, Lower-Limb Exoskeleton, Inertial Force, Robotic Systems | ||
مراجع | ||
[1] W. Liu, B. Yin, B. Yan, A survey on the exoskeleton rehabilitation robot for the lower limbs, in: 2016 2nd international conference on control, automation and robotics (ICCAR), IEEE, 2016, pp. 90-94. [2] G. Carpino, D. Accoto, N.L. Tagliamonte, G. Ghilardi, E. Guglielmelli, Lower limbs wearable robots for physiological gait restoration: state of the art and motivations, MEDIC. METODOLOGIA DIDATTICA E INNOVAZIONE CLINICA, 21(2) (2013) 72-80. [3] L. Zhiqiang, X. Hanxing, L. Weilin, Y. Zheng, Proceeding of Human Exoskeleton Technology and Discussions on Future, MECHANICAL ENGINEERING, 27(3) (2014). [4] Z. Li, H. Xie, W. Li, Z. Yao, Proceeding of human exoskeleton technology and discussions on future research, Chinese Journal of Mechanical Engineering, 27 (2014) 437-447. [5] C. Siviy, L.M. Baker, B.T. Quinlivan, F. Porciuncula, K. Swaminathan, L.N. Awad, C.J. Walsh, Opportunities and challenges in the development of exoskeletons for locomotor assistance, Nature Biomedical Engineering, 7(4) (2023) 456-472. [6] F. Pietro, Device for the automatic control of the articulation of the knee applicable to a prothesis of the thigh, in, Google Patents, 1942. [7] J. Jansen, Phase I report: DARPA exoskeleton program, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 2004. [8] H. Kazerooni, R. Steger, The Berkeley Lower Extremity Exoskeleton, Journal of Dynamic Systems, Measurement, and Control, 128(1) (2005) 14-25. [9] A.B. Zoss, H. Kazerooni, A. Chu, Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX), IEEE/ASME Transactions on mechatronics, 11(2) (2006) 128-138. [10] E. Guizzo, H. Goldstein, The rise of the body bots [robotic exoskeletons], IEEE spectrum, 42(10) (2005) 50-56. [11] C.J. Walsh, K. Pasch, H. Herr, An autonomous, underactuated exoskeleton for load-carrying augmentation, in: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2006, pp. 1410-1415. [12] C.J. Walsh, D. Paluska, K. Pasch, W. Grand, A. Valiente, H. Herr, Development of a lightweight, underactuated exoskeleton for load-carrying augmentation, in: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., IEEE, 2006, pp. 3485-3491. [13] G. Colombo, M. Joerg, R. Schreier, V. Dietz, Treadmill training of paraplegic patients using a robotic orthosis, Journal of rehabilitation research and development, 37(6) (2000) 693-700. [14] S. Hesse, D. Uhlenbrock, A mechanized gait trainer for restoration of gait, Journal of rehabilitation research and development, 37(6) (2000) 701-708. [15] J.F. Veneman, R. Kruidhof, E.E. Hekman, R. Ekkelenkamp, E.H. Van Asseldonk, H. Van Der Kooij, Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation, IEEE Transactions on neural systems and rehabilitation engineering, 15(3) (2007) 379-386. [16] S.K. Banala, S.K. Agrawal, J.P. Scholz, Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients, in: 2007 IEEE 10th international conference on rehabilitation robotics, IEEE, 2007, pp. 401-407. [17] S.K. Banala, S.H. Kim, S.K. Agrawal, J.P. Scholz, Robot assisted gait training with active leg exoskeleton (ALEX), IEEE transactions on neural systems and rehabilitation engineering, 17(1) (2008) 2-8. [18] M. Girone, G. Burdea, M. Bouzit, V. Popescu, J. Deutsch, Orthopedic rehabilitation using the “Rutgers ankle” interface, in: Medicine Meets Virtual Reality 2000, Ios Press, 2000, pp. 89-95. [19] D.P. Ferris, K.E. Gordon, G.S. Sawicki, A. Peethambaran, An improved powered ankle–foot orthosis using proportional myoelectric control, Gait & posture, 23(4) (2006) 425-428. [20] P. Beyl, M. Van Damme, R. Van Ham, B. Vanderborght, D. Lefeber, Design and control of a lower limb exoskeleton for robot-assisted gait training, Applied Bionics and Biomechanics, 6(2) (2009) 229-243. [21] K.W. Hollander, R. Ilg, T.G. Sugar, D. Herring, An Efficient Robotic Tendon for Gait Assistance, Journal of Biomechanical Engineering, 128(5) (2006) 788-791. [22] D.P. Ferris, J.M. Czerniecki, B. Hannaford, An Ankle-Foot Orthosis Powered by Artificial Pneumatic Muscles, Journal of Applied Biomechanics, 21(2) (2005) 189-197. [23] S. Jezernik, K. Jezernik, M. Morari, Impedance control based gait-pattern adaptation for a robotic rehabilitation device, IFAC Proceedings Volumes, 35(2) (2002) 389-393. [24] S. Jezernik, G. Colombo, M. Morari, Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis, IEEE Transactions on Robotics and Automation, 20(3) (2004) 574-582. [25] R. Ekkelenkamp, P. Veltink, S. Stramigioli, H. van der Kooij, Evaluation of a virtual model control for the selective support of gait functions using an exoskeleton, in: 2007 IEEE 10th International Conference on Rehabilitation Robotics, IEEE, 2007, pp. 693-699. [26] J.L. Emken, S.J. Harkema, J.A. Beres-Jones, C.K. Ferreira, D.J. Reinkensmeyer, Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury, IEEE Transactions on Biomedical Engineering, 55(1) (2007) 322-334. [27] A.S.S. Abadi, P.H. Dehkordi, R. Hajiyan, R. Kowalik, W. Wróblewski, Design and real-time evaluation of a novel observer-based predefined-time controller for the industrial processes, ISA transactions, 156 (2025) 551-564. [28] J.A. de la Tejera, R. Bustamante-Bello, R.A. Ramirez-Mendoza, J. Izquierdo-Reyes, Systematic review of exoskeletons towards a general categorization model proposal, Applied Sciences, 11(1) (2020) 76. [29] P. Maurice, J. Čamernik, D. Gorjan, B. Schirrmeister, J. Bornmann, L. Tagliapietra, C. Latella, D. Pucci, L. Fritzsche, S. Ivaldi, J. Babič, Objective and Subjective Effects of a Passive Exoskeleton on Overhead Work, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(1) (2020) 152-164. [30] R.P. Matthew, E.J. Mica, W. Meinhold, J.A. Loeza, M. Tomizuka, R. Bajcsy, Introduction and initial exploration of an active/passive exoskeleton framework for portable assistance, in: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2015, pp. 5351-5356. [31] Y. Yao, D. Shao, M. Tarabini, S.A. Moezi, K. Li, P. Saccomandi, Advancements in sensor technologies and control strategies for lower-limb rehabilitation exoskeletons: A comprehensive review, Micromachines, 15(4) (2024) 489. [32] O. Coser, C. Tamantini, P. Soda, L. Zollo, AI-based methodologies for exoskeleton-assisted rehabilitation of the lower limb: a review, Frontiers in Robotics and AI, 11 (2024) 1341580. [33] M. Belal, N. Alsheikh, A. Aljarah, I. Hussain, Deep learning approaches for enhanced lower-limb exoskeleton control: A review, IEEE Access, (2024). [34] D.D. Molinaro, K.L. Scherpereel, E.B. Schonhaut, G. Evangelopoulos, M.K. Shepherd, A.J. Young, Task-agnostic exoskeleton control via biological joint moment estimation, Nature, 635(8038) (2024) 337-344. [35] A. Soltani Sharif Abadi, P. Alinaghi Hosseinabadi, A. Hameed, A. Ordys, B. Pierscionek, Fixed-time observer-based controller for the human–robot collaboration with interaction force estimation, International Journal of Robust and Nonlinear Control, 35(10) (2025) 4062-4095. [36] S. Arunkumar, N. Jayakumar, A comprehensive review on lower limb exoskeleton: from origin to future expectations, International Journal on Interactive Design and Manufacturing (IJIDeM), (2024). [37] W. Chen, J. Li, S. Zhu, X. Zhang, Y. Men, H. Wu, Gait recognition for lower limb exoskeletons based on interactive information fusion, Applied Bionics and Biomechanics, 2022(1) (2022) 9933018. [38] G. Chen, C.K. Chan, Z. Guo, H. Yu, A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy, Critical Reviews™ in Biomedical Engineering, 41(4-5) (2013). [39] N. Yagn, Apparatus for facilitating walking, running, and jumping, in, US Patents 1889. [40] N. Yagn, Apparatus for facilitating walking, running, and jumping, in, US Patents 1890. [41] S. Qiu, Z. Pei, C. Wang, Z. Tang, Systematic Review on Wearable Lower Extremity Robotic Exoskeletons for Assisted Locomotion, Journal of Bionic Engineering, 20(2) (2023) 436-469. [42] J. Vertut, P. Coiffet, Teleoperation and robotics: Applications and technology, 1 ed., Springer, Dordrecht, 2013. [43] R.S. Mosher, Handyman to Hardiman, SAE Transactions, 76 (1968) 588-597. [44] R.S. Mosher, Force-reflecting electrohydraulic servomanipulator, Electro-Technology, Dec., (1960) 138-141. [45] M. Vukobratovic, D. Hristic, Z. Stojiljkovic, Development of active anthropomorphic exoskeletons, Medical and biological engineering, 12 (1974) 66-80. [46] M. Vukobratovic, D. Surdilovic, Y. Ekalo, D. Katic, Dynamics And Robust Control Of Robot-environment Interaction, World Scientific Publishing Company, 2009. [47] R.S. Mosher, Handyman to hardiman, Sae Transactions, (1968) 588-597. [48] K. Corker, J.H. Lyman, M. Saleem Sheredos, A PRELIMINARY EVALUATION OF REMOTE MEDICAL MANIPULATORSа, Bulletin of prosthetics research, (32) (1979) 107. [49] J.A. Moore, Pitman a powered exoskeleton suit for the infantryman, Los Alamos National Laboratory, 16 (1986). [50] X. Guan, L. Ji, R. Wang, Development of exoskeletons and applications on rehabilitation, in: MATEC Web of Conferences, EDP Sciences, 2016, pp. 02004. [51] Y. Sankai, K. Fujiwara, K. Watanabe, H. Moriyama, HOJO-brain for motion control of robots and biological systems, Artificial Life and Robotics, 2 (1998) 162-169. [52] Y. SANKAI, Study on hybrid power assist HAL-1 for walking aid using EMG, in: Proceedings of the JME on Ibaraki Symposium,(2000-3), 2000. [53] H. Kazerooni, J.-L. Racine, L. Huang, R. Steger, On the control of the berkeley lower extremity exoskeleton (BLEEX), in: Proceedings of the 2005 IEEE international conference on robotics and automation, IEEE, 2005, pp. 4353-4360. [54] C.J. Walsh, K. Endo, H. Herr, A quasi-passive leg exoskeleton for load-carrying augmentation, International Journal of Humanoid Robotics, 4(03) (2007) 487-506. [55] R. Bogue, Exoskeletons and robotic prosthetics: a review of recent developments, Industrial Robot: an international journal, 36(5) (2009) 421-427. [56] R. Bogue, Robotic exoskeletons: a review of recent progress, Industrial Robot: An International Journal, 42(1) (2015) 5-10. [57] Z. Lim, The rise of robots and the implications for military organizations, Monterey, California: Naval Postgraduate School, 2013. [58] Y. Sankai, HAL: Hybrid assistive limb based on cybernics, in: Robotics research: The 13th international symposium ISRR, Springer, 2011, pp. 25-34. [59] J.L. Contreras-Vidal, R.G. Grossman, NeuroRex: A clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton, in: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2013, pp. 1579-1582. [60] D. Charrett, FIDIC Contracts in Europe: A Practical Guide to Application, Informa Law from Routledge, London, 2022. [61] E. Prassler, A. Baroncelli, Team ReWalk Ranked First in the Cybathlon 2016 Exoskeleton Final [Industrial Activities], IEEE Robotics & Automation Magazine, 24(4) (2017) 8-10. [62] K. Suzuki, G. Mito, H. Kawamoto, Y. Hasegawa, Y. Sankai, Intention-based walking support for paraplegia patients with Robot Suit HAL, Advanced Robotics, 21(12) (2007) 1441-1469. [63] H. Shimada, Y. Kimura, T. Suzuki, T. Hirata, M. Sugiura, Y. Endo, K. Yasuhara, K. Shimada, K. Kikuchi, M. Hashimoto, M. Ishikawa, K. Oda, K. Ishii, K. Ishiwata, The Use of Positron Emission Tomography and $[^{18}{\rm F}]$Fluorodeoxyglucose for Functional Imaging of Muscular Activity During Exercise With a Stride Assistance System, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(3) (2007) 442-448. [64] M.S. Cherry, S. Kota, D.P. Ferris, An elastic exoskeleton for assisting human running, in: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2009, pp. 727-738. [65] S. Jezernik, M. Morari, Controlling the human-robot interaction for robotic rehabilitation of locomotion, in: 7th International Workshop on Advanced Motion Control. Proceedings (Cat. No. 02TH8623), IEEE, 2002, pp. 133-135. [66] R. Riener, L. Lunenburger, S. Jezernik, M. Anderschitz, G. Colombo, V. Dietz, Patient-cooperative strategies for robot-aided treadmill training: first experimental results, IEEE transactions on neural systems and rehabilitation engineering, 13(3) (2005) 380-394. [67] S. Kotov, V.Y. Lijdvoy, A. Sekirin, K. Petrushanskaya, E. Pismennaya, The efficacy of the exoskeleton ExoAtlet to restore walking in patients with multiple sclerosis, Zhurnal nevrologii i psikhiatrii imeni SS Korsakova, 117(10. Vyp. 2) (2017) 41-47. [68] J.M. Donelan, Q. Li, V. Naing, J.A. Hoffer, D. Weber, A.D. Kuo, Biomechanical energy harvesting: generating electricity during walking with minimal user effort, Science, 319(5864) (2008) 807-810. [69] T. Gurriet, S. Finet, G. Boeris, A. Duburcq, A. Hereid, O. Harib, M. Masselin, J. Grizzle, A.D. Ames, Towards restoring locomotion for paraplegics: Realizing dynamically stable walking on exoskeletons, in: 2018 IEEE international conference on robotics and automation (ICRA), IEEE, 2018, pp. 2804-2811. [70] A.T. Asbeck, R.J. Dyer, A.F. Larusson, C.J. Walsh, Biologically-inspired soft exosuit, in: 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), IEEE, 2013, pp. 1-8. [71] P. Yuan, T. Wang, F. Ma, M. Gong, Key technologies and prospects of individual combat exoskeleton, in: Knowledge Engineering and Management: Proceedings of the Seventh International Conference on Intelligent Systems and Knowledge Engineering, Beijing, China, Dec 2012 (ISKE 2012), Springer, 2014, pp. 305-316. [72] J. Stein, L. Bishop, D.J. Stein, C.K. Wong, Gait training with a robotic leg brace after stroke: a randomized controlled pilot study, American journal of physical medicine & rehabilitation, 93(11) (2014) 987-994. [73] J. Bae, C. Siviy, M. Rouleau, N. Menard, K. O'Donnell, I. Geliana, M. Athanassiu, D. Ryan, C. Bibeau, L. Sloot, A lightweight and efficient portable soft exosuit for paretic ankle assistance in walking after stroke, in: 2018 IEEE international conference on robotics and automation (ICRA), IEEE, 2018, pp. 2820-2827. [74] L.N. Awad, J. Bae, K. O’Donnell, S.M.M. De Rossi, K. Hendron, L.H. Sloot, P. Kudzia, S. Allen, K.G. Holt, T.D. Ellis, C.J. Walsh, A soft robotic exosuit improves walking in patients after stroke, Science Translational Medicine, 9(400) (2017) eaai9084. [75] R.S. Calabrò, A. Cacciola, F. Bertè, A. Manuli, A. Leo, A. Bramanti, A. Naro, D. Milardi, P. Bramanti, Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now?, Neurological Sciences, 37 (2016) 503-514. [76] E. Hong, P.H. Gorman, G.F. Forrest, P.K. Asselin, S. Knezevic, W. Scott, S.B. Wojciehowski, S. Kornfeld, A.M. Spungen, Mobility Skills With Exoskeletal-Assisted Walking in Persons With SCI: Results From a Three Center Randomized Clinical Trial, Frontiers in Robotics and AI, Volume 7 - 2020 (2020). [77] L.N. Awad, A. Esquenazi, G.E. Francisco, K.J. Nolan, A. Jayaraman, The ReWalk ReStore™ soft robotic exosuit: a multi-site clinical trial of the safety, reliability, and feasibility of exosuit-augmented post-stroke gait rehabilitation, Journal of neuroengineering and rehabilitation, 17 (2020) 1-11. [78] A. Esquenazi, M. Talaty, A. Packel, M. Saulino, The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury, American journal of physical medicine & rehabilitation, 91(11) (2012) 911-921. [79] M.B. Popović, Biomechanics and robotics, CRC Press, 2013. [80] S. Rafique, S.M. Rana, N. Bjorsell, M. Isaksson, Evaluating the advantages of passive exoskeletons and recommendations for design improvements, Journal of Rehabilitation and Assistive Technologies Engineering, 11 (2024) 20556683241239875. [81] A. Plaza, M. Hernandez, G. Puyuelo, E. Garces, E. Garcia, Lower-limb medical and rehabilitation exoskeletons: A review of the current designs, IEEE Reviews in Biomedical Engineering, 16 (2021) 278-291. [82] T. Li, Q. Li, A systematic review on load carriage assistive devices: Mechanism design and performance evaluation, Mechanism and Machine Theory, 180 (2023) 105142. [83] L. He, C. Xiong, Q. Zhang, W. Chen, C. Fu, K.-M. Lee, A backpack minimizing the vertical acceleration of the load improves the economy of human walking, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(9) (2020) 1994-2004. [84] Y. Leng, X. Lin, L. Yang, Y. Xu, C. Fu, Design of an elastically suspended backpack with tunable stiffness, in: 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM), IEEE, 2020, pp. 359-363. [85] Y. Leng, X. Lin, R. Deng, J. Chang, L. Yang, K. Zhang, C. Fu, Design and Implement an Elastically Suspended Back Frame for Reducing the Burden of Carrier, in: 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM), IEEE, 2021, pp. 236-240. [86] T. Li, Q. Li, T. Liu, J. Yi, G. Gong, Development of a novel elastic load-carrying device: Design, modeling and analysis, in: 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, 2016, pp. 1454-1460. [87] J.-P. Martin, Q. Li, Altering compliance of a load carriage device in the medial-lateral direction reduces peak forces while walking, Scientific Reports, 8(1) (2018) 13775. [88] J.-H. Park, P. Stegall, H. Zhang, S. Agrawal, Walking with aBackpack using load distribution and dynamic load compensation reduces metabolic cost and adaptations to loads, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(9) (2016) 1419-1430. [89] L.C. Rome, L. Flynn, T.D. Yoo, Rubber bands reduce the cost of carrying loads, Nature, 444(7122) (2006) 1023-1024. [90] C. Pérez-Cualtán, O. Campo, Design of a load carriage system oriented to reduce acceleration forces when carrying a backpack, Revista Facultad de Ingeniería Universidad de Antioquia, (2019). [91] S.A. Gard, S.C. Miff, A.D. Kuo, Comparison of kinematic and kinetic methods for computing the vertical motion of the body center of mass during walking, Human movement science, 22(6) (2004) 597-610. [92] Z. Yang, L. Huang, Z. Zeng, R. Wang, R. Hu, L. Xie, Evaluation of the load reduction performance via a suspended backpack with adjustable stiffness, Journal of Biomechanical Engineering, 144(5) (2022) 051001. [93] J.-P. Martin, Q. Li, Design, model, and performance evaluation of a biomechanical energy harvesting backpack, Mechanical Systems and Signal Processing, 134 (2019) 106318. [94] W. Van Dijk, T. Van de Wijdeven, M. Holscher, R. Barents, R. Könemann, F. Krause, C.L. Koerhuis, Exobuddy-A non-anthropomorphic quasi-passive exoskeleton for load carrying assistance, in: 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), IEEE, 2018, pp. 336-341. [95] K.M. Gruevski, I.J. Cameron, C. McGuinness, A. Sy, K.L. Best, L. Bouyer, G. Diamond-Ouellette, R.B. Graham, T. Karakolis, A pilot investigation of the influence of a passive military exoskeleton on the performance of lab-simulated operational tasks, IISE transactions on occupational ergonomics and human factors, 8(4) (2020) 195-203. [96] M. Hao, J. Zhang, K. Chen, H. Asada, C. Fu, Supernumerary robotic limbs to assist human walking with load carriage, Journal of Mechanisms and Robotics, 12(6) (2020) 061014. [97] H. Kazerooni, A. Chu, R. Steger, That which does not stabilize, will only make us stronger, The International Journal of Robotics Research, 26(1) (2007) 75-89. [98] I. Ketko, R. Yanovich, M. Plotnik, A. Gefen, Y. Heled, Physiological Evaluation of a Wheeled Assistive Device for Load Carriage, The Journal of Strength & Conditioning Research, 29 (2015) S139-S143. [99] Y. Leng, X. Lin, G. Huang, M. Hao, J. Wu, Y. Xiang, K. Zhang, C. Fu, Wheel-legged robotic limb to assist human with load carriage: An application for environmental disinfection during COVID-19, IEEE Robotics and Automation Letters, 6(2) (2021) 3695-3702. [100] J. Liu, B. Li, Q. Ning, M. Zhou, Y. Li, M. Liu, K. Xu, Mechanical design of a passive lower-limb exoskeleton for load-carrying assistance, in: Journal of Physics: Conference Series, IOP Publishing, 2022, pp. 012035. [101] K. Low, X. Liu, H. Yu, Design and implementation of NTU wearable exoskeleton as an enhancement and assistive device, Applied Bionics and Biomechanics, 3(3) (2006) 209-225. [102] T. Wang, Y. Zhu, T. Zheng, D. Sui, S. Zhao, J. Zhao, PALExo: A parallel actuated lower limb exoskeleton for high-load carrying, IEEE Access, 8 (2020) 67250-67262. [103] Z. Zhou, W. Chen, H. Fu, X. Fang, C. Xiong, Design and experimental evaluation of a non-anthropomorphic passive load-carrying exoskeleton, in: 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM), IEEE, 2021, pp. 251-256. [104] M. Hao, J. Zhang, K. Chen, H. Asada, C. Fu, Supernumerary Robotic Limbs to Assist Human Walking With Load Carriage, Journal of Mechanisms and Robotics, 12(6) (2020). [105] I. Ketko, M. Plotnik, R. Yanovich, A. Gefen, Y. Heled, Wheeled assistive device for load carriage–the effects on human gait and biomechanics, Ergonomics, 60(10) (2017) 1415-1424. [106] Y. Xiang, X. Yan, H. Su, N. Chen, S. Guo, J. Wu, Y. Leng, C. Fu, Powered super tail: A terrain-adaptive wheel-legged robotic limb to assist human’s load carriage, in: 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), IEEE, 2021, pp. 676-681. [107] G.M. Bryan, P.W. Franks, S. Song, A.S. Voloshina, R. Reyes, M.P. O’Donovan, K.N. Gregorczyk, S.H. Collins, Optimized hip–knee–ankle exoskeleton assistance at a range of walking speeds, Journal of neuroengineering and rehabilitation, 18 (2021) 1-12. [108] Q. Chen, S. Guo, L. Sun, Q. Liu, S. Jin, Inertial measurement unit-based optimization control of a soft exosuit for hip extension and flexion assistance, Journal of Mechanisms and Robotics, 13(2) (2021) 021016. [109] Y. Ding, I. Galiana, A.T. Asbeck, S.M.M. De Rossi, J. Bae, T.R.T. Santos, V.L. De Araujo, S. Lee, K.G. Holt, C. Walsh, Biomechanical and physiological evaluation of multi-joint assistance with soft exosuits, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(2) (2016) 119-130. [110] Y. Ding, F.A. Panizzolo, C. Siviy, P. Malcolm, I. Galiana, K.G. Holt, C.J. Walsh, Effect of timing of hip extension assistance during loaded walking with a soft exosuit, Journal of neuroengineering and rehabilitation, 13 (2016) 1-10. [111] S. Galle, P. Malcolm, W. Derave, D. De Clercq, Enhancing performance during inclined loaded walking with a powered ankle–foot exoskeleton, European Journal of Applied Physiology, 114 (2014) 2341-2351. [112] S. Lee, J. Kim, L. Baker, A. Long, N. Karavas, N. Menard, I. Galiana, C.J. Walsh, Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking, Journal of neuroengineering and rehabilitation, 15 (2018) 1-9. [113] M.K. MacLean, D.P. Ferris, Energetics of walking with a robotic knee exoskeleton, Journal of applied biomechanics, 35(5) (2019) 320-326. [114] F.A. Panizzolo, G.M. Freisinger, N. Karavas, A.M. Eckert-Erdheim, C. Siviy, A. Long, R.A. Zifchock, M.E. LaFiandra, C.J. Walsh, Metabolic cost adaptations during training with a soft exosuit assisting the hip joint, Scientific reports, 9(1) (2019) 9779. [115] J.E. Pratt, B.T. Krupp, C.J. Morse, S.H. Collins, The RoboKnee: an exoskeleton for enhancing strength and endurance during walking, in: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004, IEEE, 2004, pp. 2430-2435. [116] L. Xie, Z. Wang, G. Huang, B. Liu, Z. Zhou, Mechanical Efficiency Investigation of an Ankle-Assisted Robot for Human Walking With a Backpack-Load, Journal of Biomechanical Engineering, 143(11) (2021). [117] L.M. Mooney, E.J. Rouse, H.M. Herr, Autonomous exoskeleton reduces metabolic cost of human walking during load carriage, Journal of neuroengineering and rehabilitation, 11 (2014) 1-11. [118] P.W. Franks, G.M. Bryan, R. Reyes, M.P. O’Donovan, K.N. Gregorczyk, S.H. Collins, The effects of incline level on optimized lower-limb exoskeleton assistance: A case series, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30 (2022) 2494-2505. [119] O. Baser, H. Kizilhan, E. Kilic, Biomimetic compliant lower limb exoskeleton (BioComEx) and its experimental evaluation, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41 (2019) 1-15. [120] H. Cao, J. Zhu, C. Xia, H. Zhou, X. Chen, Y. Wang, Design and control of a hydraulic-actuated leg exoskeleton for load-carrying augmentation, in: Intelligent Robotics and Applications: Third International Conference, ICIRA 2010, Shanghai, China, November 10-12, 2010. Proceedings, Part I 3, Springer, 2010, pp. 590-599. [121] D. Cha, K.I. Kim, A lower limb exoskeleton based on recognition of lower limb walking intention, Transactions of the Canadian Society for Mechanical Engineering, 43(1) (2018) 102-111. [122] Y. Hua, J. Fan, G. Liu, X. Zhang, M. Lai, M. Li, T. Zheng, G. Zhang, J. Zhao, Y. Zhu, A novel weight-bearing lower limb exoskeleton based on motion intention prediction and locomotion state identification, IEEE Access, 7 (2019) 37620-37638. [123] D.J. Hyun, H. Park, T. Ha, S. Park, K. Jung, Biomechanical design of an agile, electricity-powered lower-limb exoskeleton for weight-bearing assistance, Robotics and Autonomous Systems, 95 (2017) 181-195. [124] H. Li, W. Cheng, F. Liu, M. Zhang, K. Wang, The effects on muscle activity and discomfort of varying load carriage with and without an augmentation exoskeleton, Applied Sciences, 8(12) (2018) 2638. [125] Y. Long, Z.-j. Du, C.-f. Chen, W.-d. Wang, L. He, X.-w. Mao, G.-q. Xu, G.-y. Zhao, W. Dong, Hybrid Control Scheme of a Hydraulically Actuated Lower Extremity Exoskeleton for Load-Carrying, Journal of Intelligent & Robotic Systems, 91(3) (2018) 493-500. [126] H.T. Tran, H. Cheng, H. Rui, X. Lin, M.K. Duong, Q. Chen, Evaluation of a Fuzzy-Based Impedance Control Strategy on a Powered Lower Exoskeleton, International Journal of Social Robotics, 8(1) (2016) 103-123. [127] S. Yu, H. Lee, W. Kim, C. Han, Development of an underactuated exoskeleton for effective walking and load-carrying assist, Advanced Robotics, 30(8) (2016) 535-551. [128] C. Zhang, X. Zang, Z. Leng, H. Yu, J. Zhao, Y. Zhu, Human–machine force interaction design and control for the HIT load-carrying exoskeleton, Advances in Mechanical Engineering, 8(4) (2016) 1687814016645068. [129] K.N. Gregorczyk, L. Hasselquist, J.M. Schiffman, C.K. Bensel, J.P. Obusek, D.J. Gutekunst, Effects of a lower-body exoskeleton device on metabolic cost and gait biomechanics during load carriage, Ergonomics, 53(10) (2010) 1263-1275. [130] Y. Long, Z.-j. Du, C.-f. Chen, W.-d. Wang, L. He, X.-w. Mao, G.-q. Xu, G.-y. Zhao, W. Dong, Hybrid control scheme of a hydraulically actuated lower extremity exoskeleton for load-carrying, Journal of Intelligent & Robotic Systems, 91 (2018) 493-500. [131] D. Lim, W. Kim, H. Lee, H. Kim, K. Shin, T. Park, J. Lee, C. Han, Development of a lower extremity exoskeleton robot with a quasi-anthropomorphic design approach for load carriage, in: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2015, pp. 5345-5350. [132] H.T. Tran, H. Cheng, H. Rui, X. Lin, M.K. Duong, Q. Chen, Evaluation of a fuzzy-based impedance control strategy on a powered lower exoskeleton, International Journal of Social Robotics, 8 (2016) 103-123. [133] T.G. Hornby, D.S. Reisman, I.G. Ward, P.L. Scheets, A. Miller, D. Haddad, E.J. Fox, N.E. Fritz, K. Hawkins, C.E. Henderson, Clinical practice guideline to improve locomotor function following chronic stroke, incomplete spinal cord injury, and brain injury, Journal of Neurologic Physical Therapy, 44(1) (2020) 49-100. | ||
آمار تعداد مشاهده مقاله: 138 تعداد دریافت فایل اصل مقاله: 181 |