| تعداد نشریات | 8 |
| تعداد شمارهها | 439 |
| تعداد مقالات | 5,662 |
| تعداد مشاهده مقاله | 7,756,376 |
| تعداد دریافت فایل اصل مقاله | 6,371,052 |
سنتز سبز نانوذرات نقره: مروری بر روشها و خواص آنتیاکسیدانی نانوذرات نقره | ||
| نشریه مهندسی عمران امیرکبیر | ||
| دوره 57، شماره 6، شهریور 1404، صفحه 939-972 اصل مقاله (1.24 M) | ||
| نوع مقاله: مقاله مروری | ||
| شناسه دیجیتال (DOI): 10.22060/ceej.2025.23714.8202 | ||
| نویسندگان | ||
| میثم ناصری1؛ مهدی ایران نژاد* 1؛ اکبر مهدیلو1؛ راحله خسروی نیسانی2 | ||
| 1دانشکده مهندسی معدن، دانشگاه صنعتی امیرکبیر، تهران، ایران | ||
| 2شرکت پویشگر نانوسبز، اصفهان، ایران | ||
| چکیده | ||
| نانوذرات نقره به دلیل توانایی در جذب و از بین بردن رادیکالهای آزاد و اکسیژن فعال دارای خاصیت آنتیاکسیدانی قابل توجهی هستند که منجر به استفاده از آن در محصولات آرایشی، بهداشتی و دارویی شده است. رویکردهای بالا به پایین و پایین به بالا برای سنتز نانوذرات نقره وجود دارند. رویکرد بالا به پایین شامل روشهای فعالسازی مکانیکی، لیتوگرافی و غیره است. رویکرد پایین به بالا شامل روشهای هیدروترمال، اکسیداسیون-احیاء، سل-ژل و سنتز سبز است. روش سنتز سبز نسبت به دیگر روشها به دلیل مزایای زیستمحیطی، اقتصادی و پایداری بیشتر مورد توجه قرار گرفته است. روش سنتز سبز با استفاده از منابع طبیعی مانند گیاهان، جلبکها، قارچها و باکتریها انجام میشود. تحقیق حاضر با هدف معرفی مناسبترین روش سنتز سبز برای تهیه نانوذرات نقره با خاصیت آنتیاکسیدانی انجام شده است. نتایج نشان میدهد که نانوذرات نقره میتوانند علاوه بر تولید رادیکالهای آزاد و تعامل با غشای سلولی، با ورود به سلولها، گونههای فعال اکسیژنی را تولید کنند که میتواند منجر به آپوپتوز (مرگ سلولی)، آسیب به غشا و مهار آنزیمها شوند. بررسی خاصیت آنتیاکسیدان نانوذرات نقره تهیه شده با روش سبز عمدتا از طریق سنجش DPPH (2، 2-دی فنیل-1-پیکریل هیدرازیل) صورت میگیرد. نتایج حاصل از بررسی خاصیت آنتیاکسیدانی نانوذرات نقره تهیه شده با استفاده از روشهای مختلف سنتز سبز نشان میدهد که سنتز نانوذرات نقره به کمک جلبک منجر به تهیه نانوذرات با اندازه کوچکتر و سنتز نانوذات نقره به کمک جلبک و عصاره گیاهان منجر به تهیه نانوذرات با خاصیت آنتیاکسیدانی بالاتر نسبت به دیگر واسطهها شده است. | ||
| کلیدواژهها | ||
| نانوذرات نقره؛ خاصیت آنتیاکسیدان؛ عصاره گیاهان؛ میکروارگانیسم؛ سنتز سبز | ||
| موضوعات | ||
| شیمی کاربردی؛ فرآوری؛ محیط زیست | ||
| عنوان مقاله [English] | ||
| Green Synthesis of Silver Nanoparticles: a Review of the Methods and Antioxidant Properties of Nanoparticles | ||
| نویسندگان [English] | ||
| meysam naseri1؛ Mehdi Irannajad1؛ Akbar Mehdilo1؛ Raheleh Khosravi N isian2 | ||
| 1Phd student - Faculty of Mining Engineering - Amir Kabir University of Technology | ||
| 2Pouyeshgar NanoSabz Company, Isfahan, Iran | ||
| چکیده [English] | ||
| Silver nanoparticles (AgNPs) are well-known for their significant antioxidant properties due to their ability to scavenge and neutralize free radicals and reactive oxygen species (ROS). This characteristic has led to their widespread application in cosmetic, hygienic, and pharmaceutical products. Various synthesis approaches exist for producing silver nanoparticles, broadly categorized into top-down and bottom-up methods. The top-down approaches include mechanical activation, lithography, and other physical methods, whereas bottom-up approaches encompass hydrothermal synthesis, redox reactions, sol-gel processes, and green synthesis techniques. Among these, green synthesis has gained considerable attention because of its environmental friendliness, cost-effectiveness, and sustainability. Green synthesis utilizes natural sources such as plants, algae, fungi, and bacteria as reducing and stabilizing agents. This study aims to identify the most suitable green synthesis method for producing silver nanoparticles with potent antioxidant activity. The results indicate that silver nanoparticles, while capable of generating free radicals and interacting with cellular membranes, can also penetrate cells and induce reactive oxygen species (ROS) production. This intracellular ROS generation may lead to apoptosis (programmed cell death), membrane damage, and enzyme inhibition. The antioxidant activity of green-synthesized silver nanoparticles is primarily evaluated using the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay. Comparative analyses reveal that silver nanoparticles synthesized using algae exhibit smaller particle sizes, while those synthesized with algae and plant extracts demonstrate higher antioxidant activity compared to other biological mediators. | ||
| کلیدواژهها [English] | ||
| Silver Nanoparticles, Antioxidant Properties, Plant Extracts, Microorganism, Green Synthesis | ||
| مراجع | ||
|
[1] H. G, Das, J.K. Patra, T. Debnath, A. Ansari, Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.), PloS One. 14 (2019) e0220950. [2] R.S. Kumar, S. Singh, B. Srivastava, R. Bhadouria, Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant, anti-inflammatory, antidiabetic and antibacterial activities, Journal of Environmental Chemical Engineering. 7 (2019) 103094. [3] S.A. Zubair, M. Azeem, R. Mumtaz, M. Younas, M. Adrees, E. Zubair, A. Khalid, F. Hafeez, M. Rizwan, Green synthesis and characterization of silver nanoparticles from Acacia nilotica and their anticancer, antidiabetic and antioxidant efficacy, Environmental Pollution. 304 (2022) 119249. [4] O.B. Adewale, K.A. Egbeyemi, J.O. Onwuelu, S.S. Potts-Johnson, S.O. Anadozie, A.O. Fadaka, O.A. Osukoya, B.T. Aluko, J. Johnson, Biological synthesis of gold and silver nanoparticles using leaf extracts of Crassocephalum rubens and their comparative in vitro antioxidant activities, Heliyon. 6 (2020). [5] M. Naseri, Irannajad M, A. Mehdilo, the importance of manganese dioxide nanoparticles production and its applications, in: In: The 41st Meeting (National Conference) of Earth Sciences, Tehran (In Persian), 2023. [6] R.K. Nisiani, Biosynthesis of silver nanoparticles using aqueous extract and essential oil of clove seeds and its biological effects on bacteria causing tooth decay and gastric ulcers, 2019. [7] M.A. Roy, O. Bulut, S. Some, A.K. Mandal, Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity, RSC Advances. 9 (2019) 2673–2702. [8] V.Š. Slepička, N. Slepičková Kasálková, J. Siegel, Z. Kolská, Methods of gold and silver nanoparticles preparation, Materials. 13 (2019) 1. [9] M. Naseri, M, Irannajad, A. Mehdilo, Algae as a medium for synthesizing metal nanoparticles, in: In: The 3rd National Conference on Application of Experimental and Numerical Methods in Chemical and Mineral Industries, Kerman, (In Persian), 2024. [10] M. Naseri, M, Irannajad, A. Mehdilo, Comparison of chemical synthesis and green synthesis methods in the preparation of manganese oxide nanoparticles, in: The 3rd Iranian Conference of Green Mining and Mine Industries, (In Persian)., 2022. [11] M.S. Nakamura, M. Sato, Y. Sato, N. Ando, T. Takayama, M. Fujita, Synthesis and application of silver nanoparticles (Ag NPs) for the prevention of infection in healthcare workers, International Journal of Molecular Sciences. 20 (2019) 3620. [12] M. M. Aravind, A. Ahmad, I. Ahmad, M. Amalanathan, K. Naseem, S.M.M. Mary, C. Parvathiraja, S. Hussain, T.S. Algarni, Critical green routing synthesis of silver NPs using jasmine flower extract for biological activities and photocatalytical degradation of methylene blue, Journal of Environmental Chemical Engineering. 9 (2021) 104877. [13] Z. Asadi, M. Saki, R. Khosravi, M. Amin, A. Ghaemi, Green Synthesis of Silver Nanoparticles Using Extracts of Cocculus Pendulus: Morphology and Antibacterial Efficacy Against Common Nosocomial Pathogens, Indian Journal of Microbiology. (2024) 1–10. [14] R.A. Hamouda, M. Abd El-Mongy, Comparative study between two red algae for biosynthesis silver nanoparticles capping by SDS: Insights of characterization and antibacterial activity, Microbial Pathogenesis. 129 (2019) 224–232. [15] F.S. Al-Khattaf, Gold and silver nanoparticles: Green synthesis, microbes, mechanism, factors, plant disease management and environmental risks, Saudi Journal of Biological Sciences. 28 (2021) 3624–3631. [16] A.A. Yaqoob, K. Umar, M.N.M. Ibrahim, Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review, Applied Nanoscience. 10 (2020) 1369–1378. [17] M. Sikdar, S. Sikdar, The factors affecting optimisation of phytosynthesis of silver nanoparticles using Indian medicinal plant species and their biological applications: A review, Biomedicines. 43 (2023) 249–258. [18] Y. Qin, Y. Liu, L. Yuan, H. Yong, J. Luo Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract, Food Hydrocolloids. 96 (2019) 102–111. [19] W. Zhang, W. Jiang Antioxidant and antibacterial chitosan film with tea polyphenols-mediated green synthesis silver nanoparticle via a novel one-pot method, International Journal of Biological Macromolecules. 155 (2020) 1252–1261. [20] K. radikály O. Greguška, oxid dusnatý a antioxidačný systém v kĺboch postihnutých zápalom, Rheumatologia. 11 (1997) 161–166. [21] F. Karimi, N. Rezaei-Savadkouhi, M. Uçar, A. Aygun, R.N.E. Tiri, I. Meydan, E. Aghapour, H. Seckin, D. Berikten, T. Gar, F. Sen Efficient green photocatalyst of silver-based palladium nanoparticles for methyle orange photodegradation, investigation of lipid peroxidation inhibition, antimicrobial, and antioxidant activity, Food and Chemical Toxicology. 169 (2022) 113406. [22] V. Seminko, P. Maksimchuk, G. Grygorova, E. Okrushko, O. Avrunin, V. Semenets, Y, V Malyukin Mechanism and dynamics of fast redox cycling in cerium oxide nanoparticles at high oxidant concentration, The Journal of Physical Chemistry C. 125 (2021) 4743–4749. [23] B. Komazec, P. Cvjetko, B. Balen, I. Letofsky-Papst, D.M. Lyons, P. P. Štefanić The occurrence of oxidative stress Induced by Silver nanoparticles in Chlorella vulgaris depends on the surface-stabilizing Agent, Nanomaterials. 13 (2023) 1967. [24] M. Quinteros, V.C. Aristizábal, P.R. Dalmasso, M.G. Paraje, PL. Páez, Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity, 36 (2016) 216–223. [25] V. Buranasudja, C. Muangnoi, K. Sanookpan, H. Halim, B. Sritularak, P. Rojsitthisak, Eriodictyol attenuates H2O2-Induced oxidative damage in human dermal fibroblasts through enhanced capacity of antioxidant machinery, Nutrients. 14 (2022) 2553. [26] I. Bose, S. Roy, V.K. Pandey, R. Singh, A comprehensive review on significance and advancements of antimicrobial agents in biodegradable food packaging, Antibiotics. 12 (2023) 968. [27] W. Yin, M. Liu, T.-L. Zhao, F.-J. Qian, H. Li, Q.-Z. Yao, S.-Q. Fu,T.G. Zhou, Removal and recovery of silver nanoparticles by hierarchical mesoporous calcite: Performance, mechanism, and sustainable application, Environmental Research. 187 (2020) 109699. [28] T.T.H. Le, T.H. Ngo, T.H. Nguyen, V.H. Nguyen, P.H. Nguyen, Anti-cancer activity of green synthesized silver nanoparticles using Ardisia gigantifolia leaf extract against gastric cancer cells, Biochemical and Biophysical Research Communications. 661 (2023) 99–107. [29] M.A. S. Khalil, A. Mehmood, M.A.R. Khan, K.S. Ahmad, F. Abasi, M. Raffi, K. Ali, M.E.H. Khan, D.A. Jones, M. Abdelkarim, Antibacterial, antioxidant and photocatalytic activity of novel Rubus ellipticus leaf mediated silver nanoparticles, Journal of Saudi Chemical Society. 27 (2023) 101576. [30] A.O. Docea, D. Calina, A.M. Buga, O. Zlatian, M. Paoliello, G.D. Mogosanu, C.T. Streba, E.L. Popescu, A.E. Stoica, L. Mogoanta, The effect of silver nanoparticles on antioxidant/pro-oxidant balance in a murine model, International Journal of Molecular Sciences. 21 (2020) 1233. [31] L.T.B. W.W. Melkamu, L. T. Bitew, Green synthesis of silver nanoparticles using Hagenia abyssinica (Bruce) JF Gmel plant leaf extract and their antibacterial and anti-oxidant activities, Heliyon. 7 (2021). [32] O.J.M. C. Santschi, N. Von Moos, V.B. Koman, V.I. Slaveykova, P. Bowen, O.J. Martin, Non-invasive continuous monitoring of pro-oxidant effects of engineered nanoparticles on aquatic microorganisms, Journal of Nanobiotechnology. 15 (2017) 1–18. [33] S. U. R. Qamar, J.N. Ahmad, Nanoparticles: Mechanism of biosynthesis using plant extracts, bacteria, fungi, and their applications, Journal of Molecular Liquids. 334 (2021) 116040. [34] S. Wahab, T. Khan, M. Adil, A. Khan, Mechanistic aspects of plant-based silver nanoparticles against multi-drug resistant bacteria, Heliyon. 7 (2021). [35] P. Nie, Y.Zhao, H. Xu, Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review, Ecotoxicology and Environmental Safety. 253 (2023) 114636. [36] M. Noga, J. Milan, A. Frydrych, K. Jurowski, Toxicological aspects, safety assessment, and green toxicology of silver nanoparticles (AgNPs)—critical review: state of the art, International Journal of Molecular Sciences. 24 (2023) 5133. [37] A. Sati, T. N. Ranade, S. N. Mali, H. K. Ahmad Yasin, A. Pratap, Silver Nanoparticles (AgNPs): Comprehensive Insights into Bio/Synthesis, Key Influencing Factors, Multifaceted Applications, and Toxicity─ A 2024 Update, ACS Omega. (2025). [38] L. E. Valenti, C.E. Giacomelli, Stability of silver nanoparticles: agglomeration and oxidation in biological relevant conditions, Journal of Nanoparticle Research. 19 (2017) 1–9. [39] A. Rónavári, P. Bélteky, E. Boka, D. Zakupszky, N. Igaz, B. Szerencsés, M. Kiricsi, Polyvinyl-pyrrolidone-coated silver nanoparticles—the colloidal, chemical, and biological consequences of steric stabilization under biorelevant conditions, International Journal of Molecular Sciences. 22 (2021) 8673. [40] S. F. Ahmed, M. Mofijur, N. Rafa, A. T. Chowdhury, S. Chowdhury, M. Nahrin, , H.C. Ong, Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges, Environmental Research. 204 (2022) 111967. [41] A. García-Quintero, M. Palencia, A critical analysis of environmental sustainability metrics applied to green synthesis of nanomaterials and the assessment of environmental risks associated with the nanotechnology, Science of the Total Environment. 793 (2021) 148524. [42] S. Kaabipour, S. Hemmati, A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures, Beilstein Journal of Nanotechnology. 12 (2021) 102–136. [43] M, Naseri, M. Irannajad, A. Mehdilo, R. khosravi, Green synthesis ofsilver nanoparticles: a review ofthe methods and antibacterial properties of nanoparticles, Chemistry& Nsnochemistry. 3 (2024) 56. [44] O. Ahmadi, H. Jafarizadeh-Malmiri, N. Jodeiri, Optimization of processing parameters for hydrothermal silver nanoparticles synthesis using Aloe vera leaf extract and estimation of their physico-chemical and antifungal properties, Zeitschrift Für Physikalische Chemie. 233 (2019) 651–667. [45] O. Ahmadi, Z. Sayyar, H. Jafarizadeh Malmiri, Optimization of Processing Time, Temperature, and Stirring Rate to Synthesize the Ag Nanoparticles Using Oregano Extract, Iran. J. Chem. Chem. Eng. Research Article. 42 (2023). [46] S. Hamoud Alshahrani, A. A. Alameri, R. S. Zabibah, A. Turki Jalil, O. Ahmadi, G. Behbudi, Screening method synthesis of AgNPs using Petroselinum crispum (parsley) leaf: Spectral analysis of the particles and antibacterial study, Journal of the Mexican Chemical Society. 66 (2022) 480–487. [47] M. Eshghi, A. Kamali-Shojaei, H. Vaghari, Y. Najian, Z. Mohebian, O. Ahmadi, H. Jafarizadeh-Malmiri, Corylus avellana leaf extract-mediated green synthesis of antifungal silver nanoparticles using microwave irradiation and assessment of their properties, Green Processing and Synthesis. 10 (2021) 606–613. [48] A.-T. Le, H.-A. Ha, M.M. Al-Ansari, K. Elankathirselvan, L.A.A, Al-Humaid Aristolochia bracteolata flower extract based phytosynthesis and characterization of AgNPs: Antimicrobial, antidiabetic, and antioxidant activities potential assessment, Environmental Research. 251 (2024) 118729. [49] S. Mallick, N. Pradhan, Bio-fabrication of silver nanoparticles using Commelina erecta, L.: a mechanistic approach on synthesis, optimization, antibacterial, and antioxidant potential, Bioprocess and Biosystems Engineering. 47 (2024) 495–507. [50] K. Manimaran, S. Loganathan, D.G. Prakash, D. Natarajan Antibacterial and anticancer potential of mycosynthesized titanium dioxide (TiO2) nanoparticles using Hypsizygus ulmarius, Biomass Conversion and Biorefinery. 14 (2024) 13293–13301. [51] A.d.C.G. C.C.M. Figueiredo, L.C. Zibordi, F.O. Granero, V.F. Ximenes, N.M. Pavan, L.P. Silva, C. da S.M. Sonvesso, A.E. Job, N. Nicolau-Junior Biosynthesis of silver nanoparticles of Tribulus terrestris food supplement and evaluated antioxidant activity and collagenase, elastase and tyrosinase enzyme inhibition: In vitro and in silico approaches, Food Bioprod. Process. 138 (2023) 150–161. [52] H. Yousaf, A. Mehmood, K.S. Ahmad, M. Raffi, Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agents, Materials Science and Engineering: C. 112 (2020) 110901. [53] K. Seku, B.R. Gangapuram, B. Pejjai, K.K. Kadimpati, N. Golla, Microwave-assisted synthesis of silver nanoparticles and their application in catalytic, antibacterial and antioxidant activities, Journal of Nanostructure in Chemistry. 8 (2018) 179–188. [54] S. Valsalam, P. Agastian, M.V. Arasu, N.A. Al-Dhabi, A.-K.M. Ghilan, K. Kaviyarasu, B. Ravindran, S.W. Chang, S. Arokiyaraj, Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties, Journal of Photochemistry and Photobiology B: Biology. 191 (2019) 65–74. [55] G.M. Sangaonkar, K. D. Pawar, Garcinia indica mediated biogenic synthesis of silver nanoparticles with antibacterial and antioxidant activities, Colloids and Surfaces B: Biointerfaces. 164 (2018) 210–217. [56] A.V. Samrot, N. Shobana, R. Jenna Antibacterial and antioxidant activity of different staged ripened fruit of Capsicum annuum and its green synthesized silver nanoparticles, BioNanoScience. 8 (2018) 632–646. [57] A.M. Baroi, I. Fierascu, A.-I. Ghizdareanu, B. Trica, T. Fistos, R.I. Matei, R.C. Fierascu, C. Firinca, I.D. Sardarescu, S.M. Avramescu Green Approach for Synthesis of Silver Nanoparticles with Antimicrobial and Antioxidant Properties from Grapevine Waste Extracts, International Journal of Molecular Sciences. 25 (2024) 4212. [58] A.K. Alzubaidi, W.J. Al-Kaabi, A.A. Ali, S. Albukhaty, H. Al-Karagoly, G.M. Sulaiman, M. Asiri, Y. Khane, Green synthesis and characterization of silver nanoparticles using flaxseed extract and evaluation of their antibacterial and antioxidant activities, Applied Sciences. 13 (2023) 2182. [59] G. Suriyakala, S. Sathiyaraj, S. Devanesan, M.S. AlSalhi, A. Rajasekar, M.K. Maruthamuthu, R. Babujanarthanam, Phytosynthesis of silver nanoparticles from Jatropha integerrima Jacq. flower extract and their possible applications as antibacterial and antioxidant agent, Saudi Journal of Biological Sciences. 29 (2022) 680–688. [60] R. Mahmoudi, S. Aghaei, Z. Salehpour, A. Mousavizadeh, S.S. Khoramrooz, M. Taheripour Sisakht, G. Christiansen, M. Baneshi, B. Karimi, H. Bardania, Antibacterial and antioxidant properties of phyto‐synthesized silver nanoparticles using Lavandula stoechas extract, Applied Organometallic Chemistry. 34 (2020) e5394. [61]. L.L. Khanh, N. T. Truc, N. T. Dat, N. T. P. Nghi, V. Van Toi, N. T. T. Hoai, N.T. Hiep, Gelatin-stabilized composites of silver nanoparticles and curcumin: characterization, antibacterial and antioxidant study, Sci. Technol. Adv. Mater. 20 (2019) 276. [62] A.R. Deshmukh, A. Gupta, B. S. Kim, Ultrasound assisted green synthesis of silver and iron oxide nanoparticles using fenugreek seed extract and their enhanced antibacterial and antioxidant activities, BioMed Research International. 1 (2019) 1714358. [63] M. Hamelian, M.M. Zangeneh, A. Amisama, K. Varmira, H. Veisi, Green synthesis of silver nanoparticles using Thymus kotschyanus extract and evaluation of their antioxidant, antibacterial and cytotoxic effects, Applied Organometallic Chemistry. 32 (2018) e4458. [64] A. Vijayakumari, A. Sinthiya, Biosynthesis of phytochemicals coated silver nanoparticles using aqueous extract of leaves of Cassia alata–characterization, antibacterial and antioxidant activities, International Journal of Pharmaceutical and Clinical Research. 10 (2018) 138–149. [65] S. Ansar, H. Tabassum, N.S. Aladwan, M. Naiman Ali, B. Almaarik, S. AlMahrouqi, M. Abudawood, N. Banu, R. Alsubki, Eco friendly silver nanoparticles synthesis by Brassica oleracea and its antibacterial, anticancer and antioxidant properties, Scientific Reports. 10 (2020) 18564. [66] M. Govindappa, B. Hemashekhar, M.-K. Arthikala, V.R. Rai, Y. L. Ramachandra, Characterization, antibacterial, antioxidant, antidiabetic, anti-inflammatory and antityrosinase activity of green synthesized silver nanoparticles using Calophyllum tomentosum leaves extract, Results in Physics. 9 (2018) 400–408. [67] G. Das, J.K. Patra, H-S Shin, Biosynthesis, and potential effect of fern mediated biocompatible silver nanoparticles by cytotoxicity, antidiabetic, antioxidant and antibacterial, studies, Materials Science and Engineering: C. 114 (2020) 111011. [68] S. Rajeshkumar, S. Menon, S.V. Kumar, M.M. Tambuwala, H.A. Bakshi, M. Mehta, S. Satija, G. Gupta, D.K. Chellappan, K. Dua, Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract, Journal of Photochemistry and Photobiology B: Biology. 197 (2019) 111531. [69] H. V.R. Netala, S.S. Sana, H. Li, Z. Zang, Rosmarinic Acid-Rich Perilla frutescens Extract-Derived Silver Nanoparticles: A Green Synthesis Approach for Multifunctional Biomedical Applications including Antibacterial, Antioxidant, and Anticancer Activities, Molecules. 29 (2024) 1250. [70] A. Arya, P. K. Tyagi, S. Bhatnagar, R. K. Bachheti, A. Bachheti, M. Ghorbanpour, Biosynthesis and assessment of antibacterial and antioxidant activities of silver nanoparticles utilizing Cassia occidentalis L. seed, Scientific Reports. 14 (2024) 7243. [71]. N. Kaur, R. Kumar, S. Alhan, H. Sharma, N. Singh, R. Yogi, A. K. Bhan-Khar, Lycium shawii mediated green synthesis of silver nanoparticles, characterization and assessments of their phytochemical, antioxidant, antimicrobial properties, Inorganic Chemistry Communications. 159 (2024) 11735. [72] S. Gorai, S. Raha Antibacterial and antioxidant activity of green synthesized silver nanoparticles using seeds of Bixa orellanaL, 2024. [73] V. V. Konduri, N. K. Kalagatur, L. Gunti, U. K. Mangamuri, V. R. Kalagadda, S. Poda, S .B. N. Krishna, Green synthesis of silver nanoparticles from Hibiscus tiliaceus L. Leaves and their applications in dye degradation, antioxidant, antimicrobial, and anticancer activities, South African Journal of Botany. 168 (2024) 476–487. [74] M.Z. Shah, Z.-H. Guan, A.U. Din, A. Ali, A.U. Rehman, K. Jan, S. Faisal, S. Saud, M. Adnan, S. Farhad, Synthesis of silver nanoparticles using Plantago lanceolata extract and assessing their antibacterial and antioxidant activities, Scientific Reports. 11 (2021) 20754. [75] N. Konappa, A.C. Udayashankar, N. Dhamodaran, S. Krishnamurthy, S. Jagannath, F. Uzma, C.K. Pradeep, S. De Britto, S. Chowdappa, S. Jogaiah, Ameliorated antibacterial and antioxidant properties by Trichoderma harzianum mediated green synthesis of silver nanoparticles, Biomolecules. 11 (2021) 535. [76] H. Mohd Yusof, N.A. Abdul Rahman, R. Mohamad, n. a. a. rahman, Microbial mediated synthesis of silver nanoparticles by Lactobacillus Plantarum TA4 and its antibacterial and antioxidant activity, Applied Sciences. 10 (2020) 6973. [77] R. Abduladheem Jabbar, N. N. Hussien Investigation of antioxidant and cytotoxicity effects of silver nanoparticles produced by biosynthesis using Lactobacillus gasseri, Archives of Razi Institute. 76 (2021) 781–793. [78] T. Khan, A. Yasmin, H. E. Townley An evaluation of the activity of biologically synthesized silver nanoparticles against bacteria, fungi and mammalian cell lines, Colloids and Surfaces B: Biointerfaces. 194 (2020) 1118156. [79] N.A. Al-Dhabi, A.-K.M. Ghilan, G.A. Esmail, M.V. Arasu, V. Duraipandiyan, K. Ponmurugan Environmental friendly synthesis of silver nanomaterials from the promising Streptomyces parvus strain Al-Dhabi-91 recovered from the Saudi Arabian marine regions for antimicrobial and antioxidant properties, Journal of Photochemistry and Photobiology B: Biology. 197 (2019). [80] P. Prema, S.S. Ranjani, K.R. Kumar, V. Veeramanikandan, N. Mathiyazhagan, V.-H. Nguyen, P. Balaji, Bio Microbial synthesis of silver nanoparticles using Lactobacillus plantarum for antioxidant, antibacterial activities, Inorganic Chemistry Communications. 136 (2022) 109139. [81] A.Y. T. Khan, H, E. Townley An evaluation of the activity of biologically synthesized silver nanoparticles against bacteria, fungi and mammalian cell lines, Colloids and Surfaces B: Biointerfaces. 194 (2020). [82] P.E. Gnanakani, P. Santhanam, K. Premkumar, K.E. Kumar, M. D. Dhanaraju, Nannochloropsis extract–mediated synthesis of biogenic silver nanoparticles, characterization and in vitro assessment of antimicrobial, antioxidant and cytotoxic activities, Asian Pacific Journal of Cancer Prevention: APJCP. 20 (2019) 2353. [83] N. Raghuwanshi, N. Arora, R. Varshney, P. Roy, V. Pruthi, Antineoplastic and antioxidant potential of phycofabricated silver nanoparticles using microalgae Chlorella minutissima, IET Nanobiotechnology. 11 (2017) 827–834. [84] R.S. Sathishkumar, P. Sundaramanickam, A., Srinath, R., Ramesh, T., Saranya, K., Meena, M., S. Parthasarathy, Green synthesis of silver nanoparticles by bloom forming marine microalgae Trichodesmium erythraeum and its applications in antioxidant, drug-resistant bacteria, and cytotoxicity activity, Journal of Saudi Chemical Society. 23 (2019) 1180–1191. [85] J. Venkatesan, S.-K. Kim, Min Suk Shim, M. S. Shim, Antimicrobial, antioxidant, and anticancer activities of biosynthesized silver nanoparticles using marine algae Ecklonia cava, Nanomaterials. 6 (2016) 235. [86] R.S. Hamida, M.A. Ali, Z.N. Almohawes, H. Alahdal, M.A. Momenah, M.M. Bin-Meferij, Green synthesis of hexagonal silver nanoparticles using a novel microalgae coelastrella aeroterrestrica strain BA_Chlo4 and resulting anticancer, antibacterial, and antioxidant activities, Pharmaceutics. 14 (2022) 2002. [87]. R. Anjali, S. Palanisamy, M. Vinosha, A. M.Selvi, G. Sathiyaraj, T. Marudhupandi, N. M. Prabhu, Fabrication of silver nanoparticles from marine macro algae Caulerpa sertularioides: Characterization, antioxidant and antimicrobial activity, Process Biochem. 121 (2022) 601–618. [88] B.Y. Ozturk, D. Yesim, O, Üniversitesi, Extracellular synthesis of silver nanoparticles using Cladophora sp. and its antimicrobial activity effects on lipid peroxidation and antioxidant activites of extracts, Fresenius Environmental Bulletin. 30 (2021) 7422–7432. [89] R.A. Abo-Elmagd, M.H. Hussein, R.A. Hamouda, A.E. Shalan, A, Abdelrazak Statistical optimization of photo-induced biofabrication of silver nanoparticles using the cell extract of Oscillatoria limnetica: Insight on characterization and antioxidant potentiality, RSC Advances. 10 (2020) 44232–44246. [90] N. González-Ballesteros, M. Fernandes, R. Machado, P. Sampaio, A.C. Gomes, A. Cavazza, F. Bigi, M. C. Rodríguez-Argüelles, Valorisation of the invasive macroalgae Undaria pinnatifida (Harvey) suringar for the green synthesis of gold and silver nanoparticles with antimicrobial and antioxidant potential, Marine Drugs. 21 (2023) 397. [91] N. Raghuwanshi, N. Arora, R. Varshney, P. Roy, V. Pruthi, Antineoplastic and antioxidant potential of phycofabricated silver nanoparticles using microalgae Chlorella minutissima, IET Nanobiotechnology. 11 (2017) 827–834. [92] R.A. Hamouda, E. S. Aljohani, Assessment of silver nanoparticles derived from brown algae sargassum vulgare: insight into antioxidants, anticancer, antibacterial and hepatoprotective effect, Marine Drugs. 22 (2024) 154. [93] M.K. Soliman, S.S. Salem, M. Abu-Elghait, M. S. Azab, Biosynthesis of silver and gold nanoparticles and their efficacy towards antibacterial, antibiofilm, cytotoxicity, and antioxidant activities, Applied Biochemistry and Biotechnology. 195 (2023) 1158–1183. [94] R. Thakor, H. Mistry, H. Patel, D. Jhala, N. Parmar, H. B. Biogenic, synthesis of silver nanoparticles mediated by the consortium comprising the marine fungal filtrates of Penicillium oxalicum and Fusarium hainanense along with their antimicrobial, antioxidant, larvicidal and anticancer potency, Journal of Applied Microbiology. 133 (2022) 857–869. [95] H. Mistry, Thakor, R., Patil, C., Trivedi, J., Bariya, H. Bariya, Biogenically proficient synthesis and characterization of silver nanoparticles employing marine procured fungi Aspergillus brunneoviolaceus along with their antibacterial and antioxidative potency, Biotechnology Letters. 43 (2021) 307–316. [96] A. Sharma, A. Sagar, J. Rana, R. Rani, Green synthesis of silver nanoparticles and its antibacterial activity using fungus Talaromyces purpureogenus isolated from Taxus baccata Linn, Micro and Nano Systems Letters. 10 (2022) 2. [97] P. Gupta, N. Rai, A. Verma, D. Saikia, S.P. Singh, R. Kumar, S.K. Singh, D. Kumar, V. Gautam, Green-based approach to synthesize silver nanoparticles using the fungal endophyte Penicillium oxalicum and their antimicrobial, antioxidant, and in vitro anticancer potential, ACS Omega. 7 (2022) 46653–46673. [98] S. Renganathan, S. Subramaniyan, N. Karunanithi, P. Vasanthakumar, A. Kutzner, P.-S. Kim, K. Heese, antibacterial, antifungal, and antioxidant activities of silver nanoparticles biosynthesized from Bauhinia Tomentosa Linn, Antioxidants. 10 (2021) 1959. [99] R.B. Abbigeri, M. B., Thokchom, B., Singh, S. R., Bhavi, S. M., Harini, B. P., Yarajarla, Antioxidant and anti-diabetic potential of the green synthesized silver nanoparticles using Martynia annua L. root extract, Nano TransMed. 4 (2025) 100070. [100] P. V Marukurti, A., Reddy, A. M., Medapalli, S. R., Kasi, P. B., Rao, P. T., Anupoju, R., Nirmala, Evaluation of anti-vibriocidal, antioxidant properties and cytotoxicity of bio fabricated/green synthesized silver nanoparticles using Euphorbia hitra L. leaf extract, Next Materials. 7 (2025) 100355. [101] S. Andleeb, A., Khalid, A., Khalil, S., Arshad, H., Sadaf, Green synthesis of silver nanoparticles using Viola odorata and Onosma hispidum: Evaluation of their antimicrobial, antioxidant, and hemolytic properties against multidrug resistant microbes, Electronic Journal of Biotechnology. (2025). [102] B. Duraisamy, R., Arizo, A., Yilma, Antibacterial and antioxidant activity of plant-mediated green synthesized silver nanoparticles using Cissus quadrangularis aqueous extract, Bulletin of the Chemical Society of Ethiopia. 39 (2025) 483–502. [103] M. Palanivel, R., Muthumanickam, GC/MS analysis and green-synthesis of silver nanoparticles using Senna auriculata flower extract: Antibacterial, antioxidant effects and anticancer effects, Microbial Pathogenesis. 199 (2025) 107274. [104] M. Lafta, M. Z., Al-Samarrai, R. R. H., Bouaziz, Green synthesis of silver and gold nanoparticles using quercetin extracted from Arctium lappa by HPLC, Characterization and Estimation of antioxidant activity, Results in Chemistry. 13 (2025) 102028. [105] F. Yang, H., Wang, C., Wang, Q., Han, Ephedra extract-mediated gold nanoparticles on Kaolin: A natural approach for reduction and stabilization, with evaluation of antioxidant and anti-ovarian cancer activities, Journal of Science: Advanced Materials and Devices. (2025) 100853. [106] S. Ghoreishi, S. M., Mortazavi-Derazkola, Eco-friendly synthesis of gold nanoparticles via tangerine peel extract: Unveiling their multifaceted biological and catalytic potentials, Heliyon. 11 (2025). [107] N.A. Patiño-González, M. C., Echeverri-Cuartas, C. E., Torijano-Gutiérrez, S., Naranjo-Rios, S. M., Agudelo, Optimization of the green synthesis of gold nanorods using aqueous extract of peeled sour guava as a source of antioxidants, PloS One. 20 (2025) e0313458. [108] J. Alizadeh, Z., Fattahi, M., Farokhzad, A., Asghari, B., Yousefzadeh-Valendeh, S., Alipour, H., Palazon, Green Nanoparticles Synthesized from Damask Rose Petals: Evaluation of their Antioxidant, Antimicrobial, Anti-Diabetic, Anti-Alzheimer, and Photocatalytic Properties, Heliyon. (2025). [109] B. Manikandan, R., Navinkumar, M. D., Prakasam, A., Esther, P., Vanitha, G., Sathiyamoorthi, K., Dhinakaran, Eco-Friendly Synthesis, Spectral, Morphological Analysis of Cobalt Oxide Nanoparticles (Co3O4NPs) Mediated by Leaves Extract of Pedalium murex L and its Anti-bacterial, Antifungal, Antioxidant and Anticancer (MCF-7 Cell Line) Study, Indian Journal of Science and Technology. 18 (2025) 102–112. [110] A.H. Putri, G. E., Labanni, A., Arief, S., Dafriani, P., Darma, I. Y., Handayani, S., Ritonga, Green synthesis of cerium oxide nanoparticles using Citrus nobilis Lour. Peel extract and evaluation of their potential as antibacterial and antioxidant agents., Case Studies in Chemical and Environmental Engineering. 11 (2025) 101062. [111] S.K. Binadi, T. R., Mishra, P., Poudel, B. R., Gautam, Green Synthesis of Tin Oxide Nanoparticles using Psidium guajava Leaves Extract and its Applications in Antibacterial and Antioxidant Activities, Journal of Nepal Chemical Society. 45 (2025) 133–142. [112] K. Thangapushbam, V., Rama, P., Sivakami, S., Jothika, M., Muthu, K., Almansour, A. I., Perumal, Potential in-vitro antioxidant and anti-inflammatory activity of Martynia annua extract mediated Phytosynthesis of MnO2 nanoparticles, Heliyon. 10 (2024). [113] D. Ogwuegbu, M. C., Ayangbenro, A. S., Mthiyane, D. M., Babalola, O. O., Onwudiwe, Green synthesis of CuO nanoparticles using Ligustrum lucidum extract, and the antioxidant and antifungal evaluation, Materials Research Express. 11 (2024) 055010. [114] H. Khan, S. A., Shahid, S., Hanif, S., Almoallim, H. S., Alharbi, S. A., Sellami, Green synthesis of chromium oxide nanoparticles for antibacterial, antioxidant anticancer, and biocompatibility activities, International Journal of Molecular Sciences. 22 (2021) 502. [115] A.M. Eltaweil, A. S., Fawzy, M., Hosny, M., Abd El-Monaem, E. M., Tamer, T. M., Omer, Green synthesis of platinum nanoparticles using Atriplex halimus leaves for potential antimicrobial, antioxidant, and catalytic applications, Arabian Journal of Chemistry. 15 (2022) 103517. [116] H. Ahmed, H. E., Iqbal, Y., Aziz, M. H., Atif, M., Batool, Z., Hanif, A., Ahmad, Green synthesis of CeO2 nanoparticles from the Abelmoschus esculentus extract: evaluation of antioxidant, anticancer, antibacterial, and wound-healing activities, Molecules. 26 (2021) 4659. [117] R. Ali, S., Sudha, K. G., Thirumalaivasan, N., Ahamed, M., Pandiaraj, S., Rajeswari, V. D., Govindasamy, Green synthesis of magnesium oxide nanoparticles by using Abrus precatorius bark extract and their photocatalytic, antioxidant, antibacterial, and cytotoxicity activities, Bioengineering. 10 (2023) 302. [118] F. Gulbagca, F., Aygün, A., Gülcan, M., Ozdemir, S., Gonca, S., Şen, Green synthesis of palladium nanoparticles: Preparation, characterization, and investigation of antioxidant, antimicrobial, anticancer, and DNA cleavage activities, Applied Organometallic Chemistry. 35 (2021) e6272. [119] Z. Gharari, P. Hanachi, H.Sadeghinia, T.R. Walker, Eco-Friendly Green Synthesis and Characterization of Silver Nanoparticles by Scutellaria multicaulis Leaf Extract and Its Biological Activities. Pharmaceuticals, 16 (2023) 992. [120] R.M. Elamawi, R.E. Al-Harbi, A.A. Hendi, Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Control, 28 (2018) 28. [121] P. Kemala, R. Idroes, K. Khairan, M. Ramli, Z. Jalil, G.M. Idroes, T.E.Tallei, Z. Helwani, E. Safitri, M. Iqhrammullah,; et al, Green Synthesis and Antimicrobial Activities of Silver Nanoparticles Using Calotropis gigantea from Ie Seu-Um Geothermal Area, Aceh Province, Indonesia. Molecules, 27(2022) 5310. [122] N.L iaqat, N. Jahan, T. Anwar, H. Qureshi, Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Frontiers in chemistry, 10 (2022) 952006. [123] MS Akhter, MA Rahman, RK Ripon, M Mubarak, M Akter, S Mahbub, F Al Mamun, MT Sikder, A systematic review on green synthesis of silver nanoparticles using plants extract and their bio-medical applications. Heliyon,10(11) (2024)e29766. [124] PJ Li, JJ Pan, LJ Tao, X Li, DL Su, Y Shan, HY Li, Green Synthesis of Silver Nanoparticles by Extracellular Extracts from Aspergillus japonicus PJ01. Molecules, 26(15) (2021) 4479. [125] S Bhatnagar, T Kobori, D Ganesh, K Ogawa, H Aoyagi, Biosynthesis of Silver Nanoparticles Mediated by Extracellular Pigment from Talaromyces purpurogenus and Their Biomedical Applications. Nanomaterials (Basel), 9(7) (2019)1042. [126] S.Ali, L. Fatima, M.U. Ahmad, et al, Green synthesis of Agaricus avensis-mediated silver nanoparticles for improved catalytic efficiency of tyrosine hydroxylase towards potential biomedical implications. Discov Life 54 (2024) 4. [127] IJB Durval, HM Meira, BO de Veras, RD Rufino, A Converti, LA. Sarubbo, Green Synthesis of Silver Nanoparticles Using a Biosurfactant from Bacillus cereus UCP 1615 as Stabilizing Agent and Its Application as an Antifungal Agent. Fermentation. 7(4) (2021) 233. [128] A. A Bhutto, Ş Kalay, S. T. H Sherazi & M Culha, Quantitative structure–activity relationship between antioxidant capacity of phenolic compounds and the plasmonic properties of silver nanoparticles. Talanta, 189, (2018)174–181. https://doi.org/10.1016/j.talanta.2018.06.080. [129] Liu, F., Li, J., Wang, B., Fan, W., Jia, M., Li, N., Song, Y., An, C., Liu, X., & Jie, X. (2023). Green Synthesis of Silver Nanoparticles Using Fructus mori Juice: Characterization and Research of Antioxidant and Antibacterial Properties. https://doi.org/10.20944/preprints202311.0868.v1. | ||
|
آمار تعداد مشاهده مقاله: 553 تعداد دریافت فایل اصل مقاله: 485 |
||