| تعداد نشریات | 8 |
| تعداد شمارهها | 439 |
| تعداد مقالات | 5,662 |
| تعداد مشاهده مقاله | 7,756,376 |
| تعداد دریافت فایل اصل مقاله | 6,371,052 |
شناسایی و ارزیابی جدایش هسته و پوسته در مواد مرکب ساندویچی تقویت شده با الیاف کربن با استفاده از روش ترموگرافی مادون قرمز گرمایش مرحلهای | ||
| نشریه مهندسی مکانیک امیرکبیر | ||
| دوره 57، شماره 4، تیر 1404، صفحه 401-416 اصل مقاله (1.18 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22060/mej.2025.24030.7833 | ||
| نویسندگان | ||
| حمید پوربافرانی؛ ابوالفضل عظیمی؛ احمدرضا قاسمی* ؛ بهزاد مسلمی ابیانه | ||
| آزمایشگاه تحقیقاتی کامپوزیت و نانوکامپوزیت، دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران | ||
| چکیده | ||
| جدایش بین هسته و پوسته یکی از مهمترین عیوب ایجاد شده در مواد مرکب ساندویچی در حین ساخت و کارکرد آنها است. در این تحقیق از روش ترموگرافی گرمایش مرحلهای، برای شناسایی و ارزیابی جدایش هسته و پوسته در مواد مرکب ساندویچی تقویت شده با الیاف کربن و هسته فوم استفاده شدهاست. به این منظور جدایش بین هسته و پوسته در حین فرآیند ساخت، در نمونهها در نظر گرفته شد. سپس با استفاده از روش ترموگرافی مادون قرمز گرمایش مرحلهای، موقعیت و تعداد این عیوب در نمونهها شناسایی گردید. پارامترهای مورد نظر این روش مانند گام زمانی و نرخ گرمایش، از مدلسازی اجزای محدود بدست آمد. با مقایسه نتایج روش المان محدود عددی و تصویر برداری ترموگرافی تجربی، بهترین زمان ثبت تصاویر مادون قرمز، یک ثانیه پس از پایان گرمایش تعیین شد. نتایج عددی نشان داد که با افزایش توان حرارتی و زمان گرمایش اختلاف دمایی ناحیه دارای آسیب با اطراف آن بیشتر است. همچنین نتایج عددی همخوانی خوبی با نتایج تجربی دارند که میتواند قابلیت تشخیص عیب جدایش هسته و پوسته در مواد مرکب ساندویچی تقویت شده با الیاف کربن و هسته فوم را با استفاده از روش ترموگرافی گرمایش مرحلهای نشان دهد. | ||
| کلیدواژهها | ||
| ترموگرافی؛ مواد مرکب ساندویچی؛ جدایش هسته و پوسته؛ مدلسازی اجزای محدود؛ شناسایی آسیب | ||
| عنوان مقاله [English] | ||
| Detection and Evaluation of Core and Face De-bonding in Sandwich Composite Reinforced with Carbon Fibers Using Pulsed Heating Infrared Thermography Method | ||
| نویسندگان [English] | ||
| Hamid Pourbafrani؛ Abolfazl Azimi؛ Ahmad Reza Ghasemi؛ Behzad Moslemi-Abyaneh | ||
| Composite and Nanocomposite Research Laboratory, Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran | ||
| چکیده [English] | ||
| The de-bonding of core and face is one of the most important defects created in sandwich composite materials during their manufacture and operation. In this study, the pulsed step heating thermography method was used to identify and evaluate core and face de-bonding in carbon fiber reinforced sandwich composites with foam core. For this purpose, the de-bonding defects between the core and the face were implemented in the samples during the manufacturing process. Then, using the pulsed step heating infrared thermography method, the location and number of these defects in the samples were identified. The desired parameters of this method, such as time step and heating rate, were obtained from the finite element modeling. By comparing numerical and experimental thermographic imaging results, the best time to record infrared images is predicted to be one second after the end of heating. Numerical results showed that with increasing thermal power and heating time, the temperature difference between the damaged area and its surroundings increased. Also, the numerical results were in good agreement with the experimental results, which can demonstrate the ability to detect the core and the face de-bonding defect in sandwich composite materials reinforced with carbon fibers and foam core using the pulsed heating thermography method. | ||
| کلیدواژهها [English] | ||
| Thermography, Sandwich Panels, De-bonding of Core and Face, Finite Element Modeling, Damage Detection | ||
| مراجع | ||
|
[1] S. M. Senthilkumar, T. G., and Manikanta, R, Nondestructive health monitoring techniques for composite materials: A reviews, Polymers and Polymer Composites, 295 (2020) 528-540. [2] W.J. Staszewski, Mahzan, S., and Traynor, R, Health monitoring of aerospace composite structures—active and passive approach, Composites Science and Technology, 69 (2009) 1678–1685. [3] W.J. Staszewski, and Boller, C., , Aircraft structural health and usage monitoring, Tomlinson GR Health monitoring of aero- space structures: smart sensor technologies and signal processing, (2003) 29-73. [4] Y.J. Yan, Cheng, L., and Wu, Z, Development in vibration-based structural damage detection technique., Mechanical Systems and Signal Processing, 21 (2007) 2198–2211. [5] R. Usamentiaga, Venegas, P., and Guerediaga, J, Infrared thermography for temperature measurement, Sens-Basel, 14 (2014) 1305–1348. [6] B. Wiecek, Review on thermal image processing for passive and active thermography, in: Proceedings of the annual international conference of the IEEE engineering in medicine and biology, Shanghai, China, 2005. [7] C. Meola, and Carlomagno, G. M., Impact damage in GFRP: new insights with infrared thermography, Composites Part A: Applied Science and Manufacturing, 41 (2010) 1839–1847. [8] W. Harizi, Chaki, S., and Bourse, G, Mechanical damage assessment of glass fiber-reinforced polymer composites using passive infrared thermography, Composites Part B: Engineering, 59 (2014) 74-79. [9] J. Montesano, Bougherara, H., and Fawaz, Z, Application of infrared thermography for the characterization of damage in braided carbon fiber reinforced polymer matrix composites, Composites Part B: Engineering, 60 (2014) 137–143. [10] Toubal L, Damage evolution and infrared thermography in woven composite laminates under fatigue loading, International Journal of Fatigue, 28 (2006) 1867–1872. [11] M.J. Suriani, Ali, A., and Khalina, A, Detection of defects in kenaf/epoxy using infrared thermal imaging technique, Chemistry Proceedings, 4 (2012) 172–178. [12] L. Junyan, Liqiang, L., and Yang, W, Experimental study on active infrared thermography as a NDI tool for carbon-carbon composites, Composites Part B: Engineering, 45 (2013) 138–147. [13] R. Montanini, and Freni, F, Non-destructive evaluation of thick glass fiber-reinforced composites by means of optically excited lock-in thermography, composites Part A: Applied Science and Manufacturing, 43 (2012) 2075–2082. [14] S. Boccardi, Carlomagno, G. M., and Meola, C., Infrared thermography to evaluate thermoplastic composites under bending load, Composite Structures, 134 (2015) 900–904. [15] T. Lisle, Bouvet, C., and Hongkarnjanakul, N., Measure of fracture toughness of compressive fiber failure in composite structures using infrared thermography, Composites Science and Technology, 112 (2015) 22-33. [16] A. Ardebili, Kaveh, A., Alaei, M. H., Eskandari Jam, J., and Jafari, M, Health monitoring of the composite honeycomb insulation panels using thermographic image processing, Nondestructive Testing and Evaluation, 58 (2024) 1-19. [17] Ekanayake S, Composites depth determination of defects in CFRP-structures using lock-in thermography, Composites Part B: Engineering 147 (2018) 128–134. [18] G. Zhou, Zhang, Z., Yin, W., Chen, H., Wang, L., Wang, D., and Ma, H, Characterization and depth detection of internal delamination defects in CFRP based on line laser scanning infrared thermography, Structural Health Monitoring, 23(5) (2024) 3195–3210. [19] E.Z. Kordatos, Dassios, K. G., and Aggelis, D. G, Rapid evaluation of the fatigue limit in composites using infrared lock-in thermography and acoustic emission, Mechanics Research Communication, 54 (2013) 14–20. [20] M. Khademi, D.P. Pulipati, D.A. Jack, Nondestructive Inspection and Quantification of Select Interface Defects in Honeycomb Sandwich Panels, Materials, 17(11) (2024) 2772. [21] G. Liu, W. Gao, W. Liu, Y. Wei, X. Zou, W. Bai, P. Chen, Low-velocity impact damage detection in CFRP composites by applying long pulsed thermography based on post-processing techniques, Nondestructive Testing and Evaluation, 39 (2023) 1-14. [22] C. Xu, Xie, J., Huang, W., Chen, G., Gong, X, Improving defect visibility in square pulse thermography of metallic components using correlation analysis, Mechanical Systems Signal Process, 103 (2018) 73–162. [23] W. Yanjie, Shuiqiang, Z., Yongjian, L., Li, D., Dongsheng, Z, Accurate depth determination of defects in composite materials using pulsed thermography, Composite Structures, 267 (2021) 1-9. [24] Z. Zeng, Li, C., Tao, N., Feng, L., Zhang, C, Depth prediction of non-air interface defect using pulsed thermography., NDT & E International, 48 (2018) 39–45. [25] M.M. Shokrieh, and Abdolvand, H. R, Three-dimensional thermo-dynamical modeling of fire effect on polymer matrix composites, considering variation of thermal properties., Journal of Composite Materials, 45(19) (2009) 1953–1965. [26] K. Ghadermazi, Khozeimeh, M. A., Taheri-Behrooz, F., and Safizadeh, M. S, Delamination detection in glass–epoxy composites using step-phase thermography (SPT), Infrared Physics & Technology, 72 (2015) 204–209. | ||
|
آمار تعداد مشاهده مقاله: 779 تعداد دریافت فایل اصل مقاله: 416 |
||