| تعداد نشریات | 8 |
| تعداد شمارهها | 431 |
| تعداد مقالات | 5,604 |
| تعداد مشاهده مقاله | 7,220,246 |
| تعداد دریافت فایل اصل مقاله | 6,080,262 |
High-Precision Direction of Arrival Estimation for Closely Spaced Targets Using Binary-Phase Reconfigurable Intelligent Surfaces and Minimum Redundancy Linear Arrays | ||
| AUT Journal of Electrical Engineering | ||
| مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 17 آبان 1404 اصل مقاله (1.54 M) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.22060/eej.2025.24292.5674 | ||
| نویسندگان | ||
| Meysam Raees Danaee* 1؛ Ahmad Ataei2 | ||
| 1Assistant Professor, Faculty of Electrical Engineering, Imam Hossein University, Tehran, Iran | ||
| 2PhD Candidate of Electrical Engineering, Faculty of Electrical Engineering, Imam Hossein University, Tehran, Iran | ||
| چکیده | ||
| A novel method for enhancing the accuracy of direction of arrival estimation for two closely spaced targets by optimizing the geometric array configuration of a Binary-Phase Reconfigurable Intelligent Surface based on Minimum Redundancy Linear Arrays is proposed. In Binary-Phase Reconfigurable Intelligent Surfaces, the phases of the reflected signals at the Reconfigurable Intelligent Surfaces elements remain unchanged or undergo a 180-degree phase shift, making it significantly more cost-effective in terms of hardware compared to traditional direction of arrival estimation systems. This cost reduction, however, leads to an increase in the correlation of dictionary atoms. To compensate for this drawback, we regularize the optimization problem using atomic norm. Subsequently, the problem is transformed into its dual form to facilitate solving with existing solvers. Simulation results demonstrate that the proposed method can estimate the direction of arrival with higher accuracy for closely spaced targets in the angular domain, compared to existing Reconfigurable Intelligent Surfaces-based array methods, while maintaining the same hardware complexity. | ||
| کلیدواژهها | ||
| DOA estimation؛ Binary-Phase Reconfigurable Intelligent Surface (Binary-Phase RIS)؛ Minimum Redundancy Linear Arrays (MRLAs)؛ Atomic Norm Regularization | ||
|
آمار تعداد مشاهده مقاله: 3 تعداد دریافت فایل اصل مقاله: 2 |
||