- R. Ellingwood, D.O. Dusenberry, Building design for abnormal loads and progressive collapse, Comput.-Aided Civ. Infrastruct. Eng., 20(3) (2005) 194-205.
- Buscemi, S. Marjanishvili, SDOF model for progressive collapse analysis, in: Structures Congress 2005: Metropolis and Beyond, 2005, pp. 1-12.
- Khandelwal, S. El-Tawil, Collapse behavior of steel special moment resisting frame connections, J. Struct. Eng., 133(5) (2007) 646-655.
- Kiakojouri, M. Sheidaii, V. De Biagi, B. Chiaia, Progressive collapse assessment of steel moment-resisting frames using static-and dynamic-incremental analyses, J. Perform. Constr. Facil., 34(3) (2020) 04020025.
- Tavakoli, M.M. Afrapoli, Robustness analysis of steel structures with various lateral load resisting systems under the seismic progressive collapse, Eng. Fail. Anal., 83 (2018) 88-101
- Liqiang, Y. Jihong, Risk-based robustness assessment of steel frame structures to unforeseen events, Civil Engineering and Environmental Systems, (2018) 1-22.
- Tavakoli, F. Kiakojouri, Threat-independent column removal and fire-induced progressive collapse: Numerical study and comparison, Civ. Eng. Infrastruct., 48(1) (2015) 121-131.
- R. Tavakoli, F. Naghavi, A.R. Goltabar, Effect of base isolation systems on increasing the resistance of structures subjected to progressive collapse, Earthq. Struct. 9(3) (2015) 639-656.
- Gerasimidis, G. Deodatis, T. Kontoroupi, M. Ettouney, Loss-of-stability induced progressive collapse modes in 3D steel moment frames, Struct. Infrastruct. Eng., 11(3) (2015) 334-344.
- Abdollahzadeh, R. Shalikar, Retrofitting of Steel Moment-Resisting Frames under fire loading against progressive collapse, Int. J. Steel. Struct. 17(4) (2017) 1597-1611.
- Kim, J.-H. Park, T.-H. Lee, Sensitivity analysis of steel buildings subjected to column loss, Eng. Struct., 33(2) (2011) 421-432.
- Rodríguez, E. Brunesi, R. Nascimbene, Fragility and sensitivity analysis of steel frames with bolted-angle connections under progressive collapse, Eng. Struct., 228 (2021) 111508.
- Moradi, H. Tavakoli, G. Abdollahzadeh, Probabilistic assessment of failure time in steel frame subjected to fire load under progressive collapses scenario, Eng. Fail. Anal., 102 (2019) 136-147.
- Naghavi, H.R. Tavakoli, Probabilistic Prediction of Failure in Columns of a Steel Structure Under Progressive Collapse Using Response Surface and Artificial Neural Network Methods, IJST-T CIV ENG, (2021) 1-17.
- M. Javidan, H. Kang, D. Isobe, J. Kim, Computationally efficient framework for probabilistic collapse analysis of structures under extreme actions, Eng. Struct., 172 (2018) 440-452.
- Ding, X. Song, H.-T. Zhu, Probabilistic progressive collapse analysis of steel frame structures against blast loads, Eng. Struct., 147 (2017) 679-691.
- -C. Feng, S.-C. Xie, J. Xu, K. Qian, Robustness quantification of reinforced concrete structures subjected to progressive collapse via the probability density evolution method, Eng. Struct., 202 (2020) 109877.
- Jahangir, M. Bagheri, S.M.J. Delavari, Cyclic behavior assessment of steel bar hysteretic dampers using multiple nonlinear regression approach, IJST-T CIV ENG, 45(2) (2021) 1227-1251.
- Bagheri, A. Chahkandi, H. Jahangir, Seismic reliability analysis of RC frames rehabilitated by glass fiber-reinforced polymers, International Journal of Civil Engineering, 17(11) (2019) 1785-1797.
- Sadek, J.A. Main, H.S. Lew, S.D. Robert, V.P. Chiarito, S. El-Tawil, An experimental and computational study of steel moment connections under a column removal scenario, NIST Technical Note, 1669 (2010).
- Jin, S. El-Tawil, Evaluation of FEMA-350 seismic provisions for steel panel zones, J. Struct. Eng., 131(2) (2005) 250-258.
- Mazzoni, F. McKenna, M.H. Scott, G.L. Fenves, OpenSees command language manual, Pacific Earthquake Engineering Research (PEER) Center, 264 (2006).
- Ferraioli, A modal pushdown procedure for progressive collapse analysis of steel frame structures, J. Perform. Constr, 156 (2019) 227-241.
- J. Conrath, T. Krauthammer, K. Marchand, P. Mlakar, Structural Design for Physical Security: State of the Practice/Task Committee, Structural Engineering Institute, ASCE Reston, (1999).
- GSA, Alternate path analysis and design guidelines for progressive collapse resistance, General Services Administration, Washington, DC, 2016.
- S.S.R.S. Committee, Seismic rehabilitation of existing buildings (ASCE/SEI 41-06), American Society of Civil Engineers, Reston, VA, (2007).
- Lozanovski, D. Downing, P. Tran, D. Shidid, M. Qian, P. Choong, M. Brandt, M. Leary, A Monte Carlo simulation-based approach to realistic modeling of additively manufactured lattice structures, Additive Manufacturing, 32 (2020) 101092.
- Ditlevsen, H.O. Madsen, Structural reliability methods, Wiley New York, 1996.
- M. Bartlett, R.J. Dexter, M.D. Graeser, J.J. Jelinek, B.J. Schmidt, T.V. Galambos, Updating standard shape material properties database for design and reliability, Eng. J. AISC., 40(1) (2003) 2-14.
- Ellingwood, Development of a probability-based load criterion for American National Standard A58: Building code requirements for minimum design loads in buildings and other structures, US Department of Commerce, National Bureau of Standards, 1980.
- Kim, J. Kim, J. Park, Investigation of progressive collapse-resisting capability of steel moment frames using push-down analysis, J. Perform. Constr. Facil., 23(5) (2009) 327-335
- Jahangir, A. Karamodin, Structural behavior investigation based on adaptive pushover procedure, in: 10th International Congress on Civil Engineering, University of Tabriz, Tabriz. Iran, 2015.
- Pantidis, S. Gerasimidis, New Euler-type progressive collapse curves for steel moment-resisting frames: Analytical method, J. Struct. Eng., 143(9) (2017) 04017113.
- Asprone, F. Jalayer, A. Prota, G. Manfredi, Proposal of a probabilistic model for multi-hazard risk assessment of structures in seismic zones subjected to blast for the limit state of collapse, Struct. Saf. 32(1) (2010) 25-34.
|