تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,011 |
تعداد دریافت فایل اصل مقاله | 4,882,747 |
بررسی اثر تخلخل بر خمش ترمو-الاستوپلاستیک ورقهای مدرج تابعی توسط روش بدون المان بازتولید نقطه با هسته پایه شعاعی سهبعدی | ||
نشریه مهندسی مکانیک امیرکبیر | ||
مقاله 9، دوره 54، شماره 10، دی 1401، صفحه 2377-2398 اصل مقاله (1.91 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2022.20998.7356 | ||
نویسنده | ||
رضا واقفی* | ||
دانشکده مهندسی، دانشگاه فسا، فسا، ایران | ||
چکیده | ||
در این مقاله اثر تخلخل بر پاسخ خمش ترمو-الاستوپلاستیک ورقهای مدرج تابعی با خواص وابسته به دما که در معرض ترکیبی از بارهای حرارتی و مکانیکی واقع شدهاند، توسط یک مدل بدون المان سهبعدی مبتنی بر روش بازتولید نقطه با هسته پایه شعاعی مورد مطالعه قرار گرفته است. برای توصیف رفتار پلاستیک ورق، معیار تسلیم فون میزز، کرنش سختی همسانگرد و قانون جریان پراندتل-رویس بکار گرفته شده است. خواص ماده مدرج تابعی که همگی وابسته به دما فرض شدهاند، به طور پیوسته در جهت ضخامت ورق، بر اساس کسر حجمی اجزای تشکیل دهنده آن و بر طبق یک تابع توانی تغییر میکنند. از قانون آمیختگی اصلاحشده برای ارزیابی موضعی پارامترهای ترمومکانیکی مؤثر در ماده مدرج تابعی استفاده شده است. یک مدل بدون المان سهبعدی مبتنی بر روش بازتولید نقطه با هسته پایه شعاعی توسعه یافته و در همه تجزیه و تحلیلها بکار گرفته شده است. برای نشان دادن دقت و کارایی روش حاضر، نتایج بدست آمده با نتایج تحلیلی و عددی موجود در مراجع معتبر مقایسه شده و توافق بسیار خوبی میان نتایج مشاهده شده است. به علاوه تأثیر پارامترهای مهمی مانند ضریب تخلخل، شاخص تغییرات ماده، نسبت ضخامت و شرایط مرزی بر پاسخ خمش ورق مدرج تابعی مطالعه شده است. | ||
کلیدواژهها | ||
تحلیل ترموالاستوپلاستیک؛ ورق مدرج تابعی؛ تخلخل؛ روش بازتولید نقطه با هسته؛ توابع پایه شعاعی | ||
عنوان مقاله [English] | ||
Investigation of the Effect of Porosity on Thermo-Elastoplastic Bending of Functionally Graded Plates Using 3D Meshless Radial Basis Reproducing Kernel Particle Method | ||
نویسندگان [English] | ||
Reza Vaghefi | ||
Department of Mechanical Engineering, Fasa University, Fasa, Iran | ||
چکیده [English] | ||
In this paper, the effect of porosity on the thermo-elastoplastic bending response of temperature-dependent functionally graded plates exposed to a combination of thermal and mechanical loads is studied using a three-dimensional meshless model based on the radial basis reproducing kernel particle method. To describe the plastic behavior of the plate, the von Mises yield criterion, isotropic strain hardening, and the Prandtl-Reuss flow rule are adopted. The material properties are continuously varying in the thickness direction according to a power-law function in terms of the ceramic and metal volume fractions. The modified rule of mixtures is employed to locally evaluate the effective thermomechanical parameters of the functionally graded material. A 3D meshless model based on the radial basis reproducing kernel particle method is developed and used in all analyses. To show the accuracy and efficiency of the present method, the obtained results are compared with the existing analytical and numerical results and very good agreements have been observed. Several numerical examples for temperature, deflection, and stress analysis of porous functionally graded plates are presented, and the effect of significant parameters such as porosity coefficient, material gradient index, thickness ratio, and boundary conditions on the bending response of plates has been investigated. | ||
کلیدواژهها [English] | ||
Thermo-elastoplastic analysis, Functionally graded plate, Porosity, Reproducing kernel particle method, Radial basis function | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] J. Zhu, Z. Lai, , Z. Yin, J. Jeon, S. Lee, Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy, Materials chemistry and physics, 68(1-3) (2001) 130-135. [2] A.S. Rezaei, , A.R. Saidi, Application of Carrera Unified Formulation to study the effect of porosity on natural frequencies of thick porous–cellular plates. Composites Part B: Engineering, 91 (2016) 361-370. [3] M. Nemat-Alla, Reduction of thermal stresses by developing two-dimensional functionally graded materials, International journal of solids and structures, 40(26) (2003) 7339-7356. [4] M. Nemat-Alla, K.I. Ahmed, I. Hassab-Allah, Elastic–plastic analysis of two-dimensional functionally graded materials under thermal loading, International Journal of solids and Structures, 46(14-15) (2009) 2774-2786. [5] K. Gao, W. Gao, D. Chen, J. Yang, Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation, Composite Structures, 204 (2018) 831-846. [6] A.M. Zenkour, A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities, Composite Structures, 201 (2018) 38-48. [7] J. Gong, L. Xuan, B. Ying, H. Wang, Thermoelastic analysis of functionally graded porous materials with temperature-dependent properties by a staggered finite volume method, Composite Structures, 224 (2019) 111071. [8] C. Liang, Y.Q. Wang, A quasi-3D trigonometric shear deformation theory for wave propagation analysis of FGM sandwich plates with porosities resting on viscoelastic foundation, Composite Structures, 247 (2020) 112478. [9] D.S. Mashat, A.M. Zenkour, A.F. Radwan, A quasi-3D higher-order plate theory for bending of FG plates resting on elastic foundations under hygro-thermo-mechanical loads with porosity, European Journal of Mechanics-A/Solids, 82 (2020) 103985. [10] V. Kumar, S.J. Singh, V.H. Saran, S.P. Harsha, Vibration characteristics of porous FGM plate with variable thickness resting on Pasternak's foundation, European Journal of Mechanics-A/Solids, 85 (2021) 104124. [11] Y. Liu, Z. Qin, F. Chu, Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate, Nonlinear Dynamics, 104(2) (2021) 1007-1021. [12] S.K. Sah, A. Ghosh, Influence of porosity distribution on free vibration and buckling analysis of multi-directional functionally graded sandwich plates, Composite Structures, 279 (2022) 114795. [13] S.S. Vel, R.C. Batra, Exact solution for thermoelastic deformations of functionally graded thick rectangular plates, AIAA journal, 40(7) (2002) 1421-1433. [14] A. Alibeigloo, Three-dimensional exact solution for functionally graded rectangular plate with integrated surface piezoelectric layers resting on elastic foundation, Mechanics of Advanced Materials and Structures, 17(3) (2010) 183-195. [15] A.R. Mojdehi, A. Darvizeh, A. Basti, H. Rajabi, Three dimensional static and dynamic analysis of thick functionally graded plates by the meshless local Petrov–Galerkin (MLPG) method, Engineering Analysis with Boundary Elements, 35(11) (2011) 1168-1180. [16] M. Adineh, M. Kadkhodayan, Three-dimensional thermo-elastic analysis and dynamic response of a multi-directional functionally graded skew plate on elastic foundation, Composites Part B: Engineering, 125 (2017) 227-240. [17] S.J. Nikbakht, S.J. Salami, M. Shakeri, Three dimensional analysis of functionally graded plates up to yielding, using full layer-wise finite element method, Composite Structures, 182 (2017) 99-115. [18] R. Vaghefi, Three-dimensional temperature-dependent thermo-elastoplastic bending analysis of functionally graded skew plates using a novel meshless approach, Aerospace Science and Technology, 104 (2020) 105916. [19] S. Qin, G. Wei, Z. Liu, G. Su, The elastic dynamics analysis of FGM using a meshless RRKPM, Engineering Analysis with Boundary Elements, 129 (2021) 125-136. [20] Z. Liu, G. Wei, S. Qin, Z. Wang, The elastoplastic analysis of functionally graded materials using a meshfree RRKPM, Applied Mathematics and Computation, 413 (2022) 126651. [21] Z. Liu, G. Wei, Z. Wang, Numerical solution of functionally graded materials based on radial basis reproducing kernel particle method, Engineering Analysis with Boundary Elements, 111 (2020) 32-43. [22] S. Suresh, A. Mortensen, Fundamentals of Functionally Graded Materials, London: IOM Communications Ltd, 1998. [23] R.L. Williamson, B.H. Rabin, J.T. Drake, Finite element analysis of thermal residual stresses at graded ceramic‐metal interfaces. Part I. Model description and geometrical effects, Journal of Applied Physics, 74(2) (1993) 1310-1320. [24] T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta metallurgica, 21(5) (1973) 571-574. [25] J. Gong, L. Xuan, B. Ying, H. Wang, Thermoelastic analysis of functionally graded porous materials with temperature-dependent properties by a staggered finite volume method, Composite Structures, 224 (2019) 111071. [26] A. Sluzalec, Introduction to Nonlinear Thermomechanics, Theory and Finite Element Solutions, London: Springer-Verlag, 1992. [27] J.N. Reddy, An Introduction to the Finite Element Method, Singapore: McGraw-Hill, 1993. [28] H.T. Thai, T.P. Vo, A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates, Applied mathematical modelling, 37(5) (2013) 3269-3281. | ||
آمار تعداد مشاهده مقاله: 293 تعداد دریافت فایل اصل مقاله: 457 |