تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,009 |
تعداد دریافت فایل اصل مقاله | 4,882,745 |
توسعه روش پیششرط توانی برای شبیهسازی جریانهای ناپایای سیالات ویسکوالاستیک | ||
نشریه مهندسی مکانیک امیرکبیر | ||
دوره 55، شماره 3، خرداد 1402، صفحه 381-406 اصل مقاله (2.41 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22060/mej.2023.21486.7450 | ||
نویسندگان | ||
حمیدرضا غیاثی شهرکی؛ محمود نوروزی* ؛ علی عباس نژاد؛ پوریا اکبرزاده | ||
مهندسی مکانیک، دانشگاه صنعتی شاهرود، شاهرود، ایران | ||
چکیده | ||
یکی از ویژگی منحصربهفرد سیالات ویسکوالاستیک در جریانهای برشی ناپایای، رفتار نوسانی میراشونده در میدان سرعت بدون اعمال نوسان و نیروی خارجی است؛ عامل به وجود آورنده این ویژگی خاصیت الاستیک آن است. در مقاله حاضر، برای اولین بار از روش پیششرطتوانی حسگر محلی تنش برای پایداری حل عددی جریانهای ناپایای سیال ویسکوالاستیک در حال عبور از بین دو صفحه موازی ثابت استفاده میشود. برای شبیهسازی حاضر، از مدل ماکسول ساده استفاده شده است. در این روش با افزودن جمله مشتق زمانی کاذب به معادلات حاکم، شکل معادلات هذلولوی میشود. با به دست آوردن ماتریس پیششرط این معادلات که از رابطهتوانی میدان تنش به صورت محلی تصحیح میشود، با استفاده از یک الگوریتم دوزمانه که شامل حلقه داخلی و خارجی است، حل معادلات جریان ناپایای تراکمناپذیر بهصورت تراکمپذیری مصنوعی امکانپذیر میشود. جهت همگرایی حلقه داخلی ، از روش عددی وثوقیفر چهارمرحلهای استفاده میشود. جهت گسستهسازی معادلات از روش تفاضل محدود و شبکه جابجا شده استفاده شده است. محاسبات جریانهای ناپایای سیال ویسکوالاستیک برای اعداد رینولدز، اعداد وایزنبرگ و مقادیر نسبت لزجت مختلف ارائه شده است. نتایج به دست آماده دارای انطباق مناسبی با نتایج عددی دارد. نتایج نرخ همگرایی نشان میدهد که روش پیششرط توانی حسگر محلی تنش برای نسبت لزجت کمتر از 0/5 دارای پایداری زیاد، افزایش سرعت همگرایی و کاهش هزینه زمانی محاسبات میشود. | ||
کلیدواژهها | ||
روش پیششرط توانی؛ حسگر تنش؛ الگوریتم ضمنی دوزمانه؛ جریان ناپایای ویسکوالاستیک؛ سرعت همگرایی | ||
عنوان مقاله [English] | ||
The development of power-law preconditioning approach for simulation of unsteady viscoelastic flows | ||
نویسندگان [English] | ||
Hamidreza Ghiyasi Shahraky؛ Mahmood Norouzi؛ Ali Abbas Nejad؛ Pooria Akbarzadeh | ||
Energy Conversion, Faculty of Mechanics, Shahroud University of Technology, Shahroud | ||
چکیده [English] | ||
One of the particular features of viscoelastic liquids in unstable shear flows is the damping oscillatory behavior in the velocity field without imposing external force and oscillation. This behavior is seen because of the elastic property of the liquid. In the present paper, for the first time, the preconditioning method of local stress censor has been employed for numerically simulating unstable viscoelastic liquids passing through fixed parallel plates. In this regard, the Maxwell model has been used. In this method, by adding fake time derivation to governing equation, hyperbolic equations will be generated. By obtaining the preconditioning matrix of these equations corrected locally through the power relation of stress field and employing binary algorithm for time including inner and outer loop, solving incompressible unsteady flows can be possible in the form of artificial compressible flows. In order to converge the inner loop, the four-step Vossooghifar's method has been implemented. Equations were discretized through the finite difference and shifted network. Calculation of unsteady viscoelastic flows has been performed for various Reynolds numbers, Weissenberg numbers and viscosity ratios have been presented. The results are in good agreement with the numerical results. Results of the convergence rate indicate that the locally preconditioning power censor method is the appropriate one for a viscosity ratio lower than 0.5 demonstrating a higher convergence rate and reduced time cost of calculations. | ||
کلیدواژهها [English] | ||
preconditioning power method, stress censor, binary implicit algorithm, unsteady viscoelastic flow, and convergence rate | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] A. Jameson, Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings, in: 10th Computational fluid dynamics conference, 1991, pp. 1596. [2] A. Arnone, M.-S. Liou, L. POVINELLI, Multigrid time-accurate integration of Navier-Stokes equations, in: 11th Computational Fluid Dynamics Conference, 1993, pp. 3361. [3] A.J. Chorin, A numerical method for solving incompressible viscous flow problems, Journal of computational physics, 135(2) (1997) 118-125. [4] E. Turkel, Preconditioned methods for solving the incompressible and low speed compressible equations, Journal of computational physics, 72(2) (1987) 277-298. [5] A. Malan, R. Lewis, P. Nithiarasu, An improved unsteady, unstructured, artificial compressibility, finite volume scheme for viscous incompressible flows: Part I. Theory and implementation, International Journal for Numerical Methods in Engineering, 54(5) (2002) 695-714. [6] A. Malan, R. Lewis, P. Nithiarasu, An improved unsteady, unstructured, artificial compressibility, finite volume scheme for viscous incompressible flows: part II. application, International Journal for Numerical Methods in Engineering, 54(5) (2002) 715-729. [7] V. Esfahanian, P. Akbarzadeh, The Jameson’s numerical method for solving the incompressible viscous and inviscid flows by means of artificial compressibility and preconditioning method, Applied Mathematics and Computation, 206(2) (2008) 651-661. [8] V. Esfahanian, P. Akbarzadeh, K. Hejranfar, An improved progressive preconditioning method for steady non‐cavitating and sheet‐cavitating flows, International Journal for Numerical Methods in Fluids, 68(2) (2012) 210-232. [9] P. Akbarzadeh, E. Akbarzadeh, Numerical investigation of blowing effect on hydrodynamic behavior of cavitating flows over hydrofoils using power law preconditioning method, Modares Mechanical Engineering, 14(8) (2014) 59-67. (in persian) [10] P. Akbarzadeh, I. Mirzaee, M.H. Kayhani, E. Akbarzadeh, Blowing and suction effect on drag and lift coefficients for viscous incompressible flows over hydrofoils by power-law preconditioning method, Modares Mechanical Engineering, 14(4) (2014) 129-140. (in persian) [11] P. Akbarzadeh, S. Derazgisoo, M. Shahnazi, A. Askari Lahdarboni, A Power-law Preconditioning Approach for Accelerating the Convergence Rate of Steady and Unsteady Incompressible Turbulent Flows, Amirkabir Journal of Mechanical Engineering, 51(2) (2019) 437-454. (in persian) [12] P. Akbarzadeh, S.M. Derazgisoo, A dual-time implicit power-law preconditioning method for solving unsteady incompressible flows, Modares Mechanical Engineering, 16(2) (2016) 99-110. (in persian) [13] F. Rouzbahani, K. Hejranfar, Numerical simulation of wave-floating bodies interaction using a truly incompressible SPH method with artificial compressibility approach, Journal of Solid and Fluid Mechanics, 8(1) (2018) 241-252. (in persian) [14] J.L. Ericksen, Overdetermination of the speed in rectilinear motion of non-Newtonian fluids, Quarterly of Applied Mathematics, 14(3) (1956) 318-321. [15] R.E. Gaidos, R. Darby, Numerical simulation and change in type in the developing flow of a nonlinear viscoelastic fluid, Journal of Non-Newtonian Fluid Mechanics, 29 (1988) 59-79. (in persian) [16] N. Waters, M. King, Unsteady flow of an elastico-viscous liquid, Rheologica Acta, 9(3) (1970) 345-355. [17] C. Fetecau, C. Fetecau, Unsteady flows of Oldroyd-B fluids in a channel of rectangular cross-section, International Journal of Non-Linear Mechanics, 40(9) (2005) 1214-1219. [18] G. Mompean, M. Deville, Unsteady finite volume simulation of Oldroyd-B fluid through a three-dimensional planar contraction, Journal of Non-Newtonian Fluid Mechanics, 72(2-3) (1997) 253-279. [19] Z.A. D. Domiri Ganji, N. Pahlavni Nejad, Investigation of viscoelastic flow in porous channel by Akbari Ganji method, Second International Conference on New Technologies in Science, (2018). (in persian) [20] S.P. A. Jafari, Increasing numerical stability in the simulation of viscoelastic flows at high Weisenberg numbers, Journal of Solid and Fluid Mechanics, 9 (2019). (in persian) [21] A.R. H. Mahmoudi, H. Amiri Moghadam, S. Azad shahraki, Two-dimensional analysis of turbulent flow of viscoelastic fluid in a channel: a numerical study, Fluid Dynamics Conference, 17 (2017). (in persian) [22] M.F. Letelier, D.A. Siginer, Secondary flows of viscoelastic liquids in straight tubes, International journal of solids and structures, 40(19) (2003) 5081-5095. [23] P. Tamamidis, G. Zhang, D.N. Assanis, Comparison of pressure-based and artificial compressibility methods for solving 3D steady incompressible viscous flows, Journal of Computational Physics, 124(1) (1996) 1-13. [24] T. Adibi, Three-dimensional Characteristic Based Scheme and Artificial Compressibility Factor on Its Accuracy and Convergence, Fluid Mechanics & Aerodynamics Journal, 7(1) (2018) 37-48. (in persian) [25] F.H. Harlow, J.E. Welch, Numerical calculation of time‐dependent viscous incompressible flow of fluid with free surface, The physics of fluids, 8(12) (1965) 2182-2189. [26] H. Vosoughifar, Computational Fluid Dynamic in Matlab, Islamic Azad University-South Tehran Branch, 2016. (in persian) [27] S. Aristov, D. Knyazev, Viscous fluid flow between moving parallel plates, Fluid Dynamics, 47(4) (2012). [28] M. Haque, Velocity Distribution of Unsteady Laminar Flow for Viscous Fluid, GANIT: Journal of Bangladesh Mathematical Society, 29 (2009) 1-9. [29] A. Duarte, A.I. Miranda, P.J. Oliveira, Numerical and analytical modeling of unsteady viscoelastic flows: The start-up and pulsating test case problems, Journal of Non-Newtonian Fluid Mechanics, 154(2-3) (2008) 153-169. | ||
آمار تعداد مشاهده مقاله: 251 تعداد دریافت فایل اصل مقاله: 374 |