تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,199 |
تعداد دریافت فایل اصل مقاله | 4,882,940 |
A modification of Hardy-Littlewood maximal-function on Lie groups | ||
AUT Journal of Mathematics and Computing | ||
مقاله 6، دوره 5، شماره 2، 2024، صفحه 143-149 اصل مقاله (416.39 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22060/ajmc.2023.22259.1147 | ||
نویسنده | ||
Maysam Maysami Sadr* | ||
Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran | ||
چکیده | ||
For a real-valued function $f$ on a metric measure space $(X,d,\mu)$ the Hardy-Littlewood centered-ball maximal-function of $f$ is given by the `supremum-norm': $$Mf(x):=\sup_{r>0}\frac{1}{\mu(\mathcal{B}_{x,r})}\int_{\mathcal{B}_{x,r}}|f|d\mu.$$ In this note, we replace the supremum-norm on parameters $r$ by $\mathcal{L}_p$-norm with weight $w$ on parameters $r$ and define Hardy-Littlewood integral-function $I_{p,w}f$. It is shown that $I_{p,w}f$ converges pointwise to $Mf$ as $p\to\infty$. Boundedness of the sublinear operator $I_{p,w}$ and continuity of the function $I_{p,w}f$ in case that $X$ is a Lie group, $d$ is a left-invariant metric, and $\mu$ is a left Haar-measure (resp. right Haar-measure) are studied. | ||
کلیدواژهها | ||
Hardy-Littlewood maximalfunction؛ Lie group؛ Metric measure space؛ Boundedness of sublinear؛ operators | ||
مراجع | ||
| ||
آمار تعداد مشاهده مقاله: 311 تعداد دریافت فایل اصل مقاله: 193 |