![سامانه مدیریت نشریات علمی دانشگاه صنعتی امیرکبیر](./data/logo.png)
تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,287,995 |
تعداد دریافت فایل اصل مقاله | 4,882,744 |
Extended power series solution for Perkins-Kern-Nordgren model of hydraulic fracture | ||
AUT Journal of Civil Engineering | ||
مقاله 3، دوره 6، شماره 4، اسفند 2022، صفحه 461-468 اصل مقاله (1.15 M) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22060/ajce.2023.19737.5814 | ||
نویسنده | ||
Ali Asgari* | ||
Department of Civil Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran | ||
چکیده | ||
The extended Power Series (XPS) method can be extremely useful for solving nonlinear equations with regular and irregular singular points. The extended power series is considered times a logarithm or times a fractional power of x, etc.). This research shows it is simple to solve approximately the Perkins-Kern-Nordgren (PKN) model of hydraulic fracture. To illustrate the effectiveness and convenience of the XPS method, we consider the two cases of dimensionless PKN equation containing the M-scaling and -scaling. The results compared with available analytical results verified excellent agreements. | ||
کلیدواژهها | ||
Extended power series؛ nonlinear equation؛ Perkins-Kern-Nordgren model؛ hydraulic fracture. | ||
مراجع | ||
[1] T. Perkins, L. Kern, Widths of hydraulic fractures, Journal of Petroleum Technology, 13(09) (1961) 937-949.
[2] R. Nordgren, Propagation of a vertical hydraulic fracture, Society of Petroleum Engineers Journal, 12(04) (1972) 306-314.
[3] M.J. Economides, K.G. Nolte, Reservoir stimulation, Chichester UK: John Wiley & Sons, 2000.
[4] D. Mendelsohn, A review of hydraulic fracture modeling—II: 3D modeling and vertical growth in layered rock, (1984).
[5] P. Valko, M.J. Economides, Hydraulic fracture mechanics, Wiley Chichester, 1995.
[6] M.J. Economides, D.N. Mikhailov, V.N. Nikolaevskiy, On the problem of fluid leakoff during hydraulic fracturing, Transport in porous media, 67(3) (2007) 487-499.
[7] Y. Kovalyshen, E. Detournay, A reexamination of the classical PKN model of hydraulic fracture, Transport in porous media, 81(2) (2010) 317-339.
[8] N. Anjum, J.-H. He, Laplace transform: making the variational iteration method easier, Applied Mathematics Letters, 92 (2019) 134-138.
[9] J.-H. He, Some asymptotic methods for strongly nonlinear equations, International journal of Modern physics B, 20(10) (2006) 1141-1199.
[10] J.-H. He, F.-Y. Ji, Taylor series solution for Lane–Emden equation, Journal of Mathematical Chemistry, 57(8) (2019) 1932-1934.
[11] A. Asgari, Hydraulic Fracture Propagation in Brittle Rock: Based on Hydro-Mechanical Model, Tarbait Modares University, Tehran, 2016.
[12] A. Asgari, A. Golshani, Hydraulic Fracture Propagation in Impermeable Elastic Rock With Large Toughness: Considering Fluid Inertia Parameter Sharif Journal of Civil Engineering, 31.2(3.2) (2015) 23-29.
[13] A. Asgari, A. Golshani, A. Lakirouhani, Hydraulic Fracture Propagation in Brittle Rock: Considering Interaction Term Between Fluid Inertia and Viscosity Parameters, Sharif Journal of Civil Engineering, 32.2(2.1) (2016) 59-66.
[14] M.Y. Moghaddam, A. Asgari, H. Yazdani, Exact travelling wave solutions for the generalized nonlinear Schrodinger (GNLS) equation with a source by Extended tanh-coth, sine-cosine and Exp-Function methods, Appl. Math. Comput, 210 (2009) 422-435.
[15] L.F. Kemp, Study of Nordgren's equation of hydraulic fracturing, SPE Production Engineering, 5(03) (1990) 311-314.
[16] J.I. Adachi, E. Detournay, A.P. Peirce, Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers, International Journal of Rock Mechanics and Mining Sciences, 47(4) (2010) 625-639.
[17] Y. Tian-tang, Extended finite element method for modeling three-dimensional crack problems [J], Rock and Soil Mechanics, 31(10) (2010) 3280-3285.
[18] C.H. Ahn, R. Dilmore, J.Y. Wang, Modeling of hydraulic fracture propagation in shale gas reservoirs: a three-dimensional, two-phase model, Journal of Energy Resources Technology, 139(1) (2017).
[19] E. Dontsov, A. Peirce, A multiscale implicit level set algorithm (ILSA) to model hydraulic fracture propagation incorporating combined viscous, toughness, and leak-off asymptotics, Computer Methods in Applied Mechanics and Engineering, 313 (2017) 53-84.
[20] G. Lu, E. Gordeliy, R. Prioul, G. Aidagulov, A. Bunger, Modeling simultaneous initiation and propagation of multiple hydraulic fractures under subcritical conditions, Computers and Geotechnics, 104 (2018) 196-206.
[21] P. Liu, F. Liu, C. She, L. Zhao, Z. Luo, W. Guan, N. Li, Multi-phase fracturing fluid leakoff model for fractured reservoir using extended finite element method, Journal of Natural Gas Science and Engineering, 28 (2016) 548-557.
[22] H. Wang, Numerical modeling of non-planar hydraulic fracture propagation in brittle and ductile rocks using XFEM with cohesive zone method, Journal of Petroleum Science and Engineering, 135 (2015) 127-140.
[23] M. Singh, S. Srinivasan, Development of Proxy Model for Hydraulic Fracturing and Seismic Wave Propagation Processes, Mathematical Geosciences, 52(1) (2020) 81-110. | ||
آمار تعداد مشاهده مقاله: 611 تعداد دریافت فایل اصل مقاله: 572 |