تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,037 |
تعداد دریافت فایل اصل مقاله | 4,882,776 |
$C^*$-algebra-valued $S_b$-metric spaces and applications to integral equations | ||
AUT Journal of Mathematics and Computing | ||
مقاله 4، دوره 6، شماره 1، فروردین 2025، صفحه 31-39 اصل مقاله (408.9 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22060/ajmc.2023.22211.1140 | ||
نویسندگان | ||
Seyede Samira Razavi* ؛ Hashem Parvaneh Masiha | ||
Faculty of Mathematics, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran | ||
چکیده | ||
We first introduce the concept of $C^{*}$-algebra-valued $S_{b}$-metric space, then we prove Banach contraction principle in this space. Finally, existence and uniqueness results for one type of integral equation is discussed. | ||
کلیدواژهها | ||
Banach contraction principle؛ $b$-metric space؛ $S_{b}$-metric space؛ $C^*$-algebra؛ Integral equation | ||
مراجع | ||
[1] I. A. Bakhtin, The contraction mapping principle in almost metric space, in Functional analysis, No. 30 (Russian), Ulyanosk Gos. Ped. Inst. Press, Ulyanovsk, 1989, pp. 26–37. [2] M. Boriceanu, M. Bota, and A. Petrus¸el, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math., 8 (2010), pp. 367–377. [3] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), pp. 5–11. [4] M. Erden Ege and C. Alaca,C*-algebra-valued S-metric spaces, Commun. Fac. Sci. Univ. Ank. S´er. A1 Math. Stat., 67 (2018), pp. 165–177. [5] N. Hussain and M. H. Shah, KKM mappings in cone b-metric spaces, Comput. Math. Appl., 62 (2011), pp. 1677–1684. [6] W. Kirk and N. Shahzad, Fixed point theory in distance spaces, Springer, Cham, 2014. [7] Z. Ma and L. Jiang, C* -algebra-valued b-metric spaces and related fixed point theorems, Fixed Point Theory Appl., (2015), pp. 2015:222, 12. [8] Z. Ma, L. Jiang, and H. Sun, C* -algebra-valued metric spaces and related fixed point theorems, Fixed Point Theory Appl., (2014), pp. 2014:206, 11. [9] Z. H. Ma, L. N. Jiang, and Q. L. Xin, Fixed point theorems on operator-valued metric spaces, Trans. Beijing Inst. Tech., 34 (2014), pp. 1078–1080. [10] N. M. Mlaiki, Common fixed points in complex S-metric space, Adv. Fixed Point Theory, 4 (2014), pp. 509– 524. [11] G. J. Murphy, C*-algebras and operator theory, Academic Press, 1990. [12] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), pp. 289–297. [13] K. Prudhvi, Fixed point theorems in S-metric spaces, Univ. J. Comput. Math., 3 (2015), pp. 19–21. [14] S. S. Razavi and H. P. Masiha, Common fixed point theorems in C*-algebra-valued B-metric spaces with applications to integral equations, Fixed Point Theory, 20 (2019), pp. 649–661. [15] S. Sedghi, N. Shobe, and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, 64 (2012), pp. 258–266. [16] S. Sedghi, N. Shobe, and H. Zhou, A common fixed point theorem in D∗ -metric spaces, Fixed Point Theory Appl., (2007), pp. Art. ID 27906, 13. [17] A. Singh and N. Hooda, Coupled fixed point theorems in S-metric spaces, International Journal of Mathematics and Statistics Invention, 2 (2014), pp. 33–39. [18] N. Souayah and N. Mlaiki, A fixed point theorem in Sb-metric spaces, J. Math. Computer Sci., 2 (2016), pp. 131–139. [19] Q. Xia, The geodesic problem in quasimetric spaces, J. Geom. Anal., 19 (2009), pp. 452–479. | ||
آمار تعداد مشاهده مقاله: 262 تعداد دریافت فایل اصل مقاله: 113 |