تعداد نشریات | 7 |
تعداد شمارهها | 399 |
تعداد مقالات | 5,389 |
تعداد مشاهده مقاله | 5,288,193 |
تعداد دریافت فایل اصل مقاله | 4,882,935 |
Novel Design of Optically Transparent Circuit Analog Absorber by Modifying of exponentially tapered edge of element to achieve wider Bandwidth | ||
AUT Journal of Modeling and Simulation | ||
مقاله 4، دوره 56، شماره 1، 2024، صفحه 55-68 اصل مقاله (1.21 M) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22060/miscj.2024.22964.5353 | ||
نویسندگان | ||
Reza Mirzakhani* ؛ Alireza Bayat | ||
Faculty of Technical and Engineering, Electrical Engineering-Telecommunication, Imam Khomeini International University of Qazvin, Iran.University of Qazvin, Iran. | ||
چکیده | ||
This paper presents a novel design and analysis of a single-layer, exponentially tapered circuit analogue absorber (CAA) that is flexible and optically transparent. By modifying the edge of conventional crossed strips to an exponential taper, a wider bandwidth is achieved, analysed through current distribution and on the top layer of the unit cell. The designed unit cell comprises of ITO-Coated-PET a ground plane and CA absorber layer and a quarter-wavelength PVC dielectric substrate, achieving over 80% transparency and a relative bandwidth exceeding 85%. Comparative analysis with Numerical and experimental results and conventional CAA unit cells is conducted. Also, the current distribution is expressed mathematically. Parametric studies investigate various design parameters and CA elements to enhance impedance matching and absorption properties across the 2 to 25 GHz frequency range. Challenges such as the impact of layer count, substrate thickness, and analogue element type on transparency and absorption are mitigated by optimizing absorber dimensions and employing tapered shapes for strips to widen the bandwidth. This innovative CAA design finds applications in electromagnetic compatibility, radar cross-section reduction, offering a balance between wide bandwidth electromagnetic shielding and absorbing and high optical transparency, suitable for aircraft windshields, fighter canopies, space station windows end etc. | ||
کلیدواژهها | ||
Circuit Analog Absorber؛ Indium Tin-Oxide؛ Bandwidth؛ Shielding Effectiveness؛ Current Distribution | ||
مراجع | ||
[1] B. A. Munk, Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, Inc., 2003.
[2] A. Sohrab and Z. Atlasbaf, “A Circuit Analog Absorber With Optimum Thickness and Response in X-Band,” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 276-279, 2013.
[3] G. Van der plas, A. Barel and E. Schweicher, “A spectral iteration technique for analyzing scattering from circuit analog absorbers,” IEEE Transactions on Antennas and Propagation, vol. 37, no. 10, pp. 1327-1332, Oct.1989.
[4] W.-H. Choi, J.-H. Shin, T.-H. Song, J.-B. Kim, C.-M. Cho, W.-J. Lee and C.-G. Kim, “Design of Circuit[1]Analog (CA) Absorber and Application to the Leading Edge of a Wing-Shaped Structure,” IEEE Transactions on Electromagnetic Compatibility, vol. 56, no. 3, pp. 599-607, June-2014.
[5] E. Weber, Electromagnetic Fields, New York: Wiley, 1950, pp. 11 1-1 15 and p. 337.
[6] B. Munk, P. Munk and J. Pryor, “On Designing Jaumann and Circuit Analog Absorbers (CA Absorbers) for Oblique Angle of Incidence,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 1, pp. 186-193, Jan.2007.
[7] H. &. S. K. Mosallaei, “A one-layer ultra-thin meta[1]surface absorber.,” 2005 IEEE Antennas and Propagation Society International Symposium, vol. 1, pp. 615-618, july-2005.
[8] B. Munk, R. Kouyoumjian and L. Peters, “Reflection properties of periodic surfaces of loaded dipoles,” IEEE Transactions on Antennas and Propagation, vol. 19, no. 5, pp. 612-617, 1971.
[9] M. C. &. M. A. V. Hegg, “Influence of variable plate separation on fringing electric fields in parallel-plate capacitors,” Conference record of the 2004 IEEE international symposium on electrical insulation, pp. 384-387, september-2004.
[10] C.-C. Chen, “Scattering by a two-dimensional periodic array of conducting plates,” IEEE Transactions on Antennas and Propagation, vol. 18, no. 5, pp. 660-665, September,1970.
[11] Alwan, A. Elias, A. Kiourti and J. L. Volakis, “Indium tin oxide film characterization at 0.1–20 GHz using coaxial probe method,” IEEE access 3, vol. 3, pp. 648-652, 2015.
[12] S. Barone, M. Narcowich and F. Narchowich, “Floquet theory and applications,” Physical Review A, vol. 15, no. 3, p. 1109, 1077.
[13] P. A. Kuchment, Floquet theory for partial differential equations, vol. 60, Springer Science & Business Media, 1993.
[14] C. Chicone, Ordinary Differential Equations with Applications, New york: Springer New York, 2006.
[15] D. M. Kerns, Plane-wave scattering-matrix theory of antennas and antenna-antenna interactions, vol. 162, Department of Commerce, National Bureau of Standards, 1981.
[16] R. Hall, R. Mittra and K. Mitzner, “Analysis of multilayered periodic structures using generalized scattering matrix theory,” IEEE Transactions on Antennas and Propagation, vol. 36, no. 4, pp. 511-517, April 1988.
[17] D. Systems, “simulia,” CST Studio Suite, Electromagnetic field simulation software, 2023. [Online]. Available: https://www.3ds.com/products[1]services/simulia/products/cst-studio-suite/.
[18] F. Bloch, Zeitschrift fur Physik, vol. 52, pp. 555-600, 1928.
[19] R. Burleson, A. Terzuoli, E. English and L. Henderson, “Tapered periodic edge treatments for diffraction reduction,” Seattle, WA, USA, 1994.
[20] G. Vendelin, A. Pavio, U. Rohde and M. Rudolph, Microwave circuit design using linear and nonlinear techniques, John Wiley & Sons, 2021.
[21] M. Steer, Microwave and RF Design III - Networks, North Carolina State University, 2019.
[22] A. Bayat and r. Mirzakhani, “A parametric study and design of the balanced antipodal Vivaldi antenna (BAVA),” PIERS Proceedings., vol. 19, 2012.
[23] G. Van der plas, A. Barel and E. Schweicher, “A spectral iteration technique for analyzing scattering from circuit analog absorbers,” IEEE transactions on antennas and propagation, vol. 37, no. 10, pp. 1327-1332, 1989.
[24] H. Dawei, C. Jie, L. Wei, Z. Cheng and W. Tianlong, “Optically Transparent Broadband Microwave Absorption Metamaterial By Standing-Up Closed-Ring Resonators,” Advanced Optical Materials, vol. 5, no. 13, p. 1700109, May 2017.
[25] Q. Zhou, X. Yin and F. e. a. Ye, “Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure,” vol. 125, p. 131, 28 january 2019.
[26] R. Deng, K. Zhang, M. Li, L. Song and T. Zhang, “Targeted design, analysis and experimental characterization of flexible microwave absorber for window application,” Materials & Design, vol. 162, pp. 119-129, 15 january 2019.
[27] H. Jiang, W. Yang, R. Li, S. Lei, B. Chen and H. Hu, “A conformal metamaterial-based optically transparent microwave absorber with high angular stability,” IEEE Antennas Wireless Propagation Letter, vol. 20, no. 8, p. 1399–1403, Aug 2021.
[28] H. Jing, Y. Wei, J. Kang, C. Song, H. Deng, J. Duan, Z. Qu, J. Wang and B. Zhang, “An optically transparent flexible metasurface absorber with broadband radar absorption and low infrared emissivity,” Journal of Physics D: Applied Physics, vol. 56, no. 11, p. 115103, 23 February 2023.
[29] Y. Gao, H. Jing, J. Wang, J. Kang, L. Zhao, L. Chen, Y. Wang, J. Duan, Z. Qu and B. Zhang, “A transparent broadband flexible metamaterial absorber for radar infrared-compatible stealth,” Journal of Physics D: Applied Physics, vol. 57, no. 15, p. 155102, 22 January 2024.
[30] H. B. Palmer, “The capacitance of a parallel-plate capacitor by the Schwartz-Christoffel transformation,” Electrical Engineering, vol. 56, no. 3, pp. 363-368, 1937.
[31] Sheokand, Harsh and et al, “An optically transparent broadband microwave absorber using interdigital capacitance,” IEEE antennas and wireless propagation letters, vol. 18, no. 1, pp. 113-117, 2018.
[32] Pillai and K.P.P, “Fringing field of finite parallel-plate capacitors.,” Proceedings of the Institution of Electrical Engineers . IET Digital Library, vol. 117, no. 6, pp. 1201- 12-4, june-1970.
[33] Y. Li, P.-F. Gu, Z. He, Z. Cao, J. Cao, K. Wa Leung and D. Ding, “An Ultra-Wideband Multilayer Absorber Using an Equivalent Circuit-Based Approach,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 12, pp. 11911-11921, 2022.
[34] A. Rida, “Circuit analog absorber based on the Jerusalem cross,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 5, pp. 1582-1587, 2011.
[35] C. Dai, Z. Shi and X. Yi, “Floquet theorem with open systems and its applications,” American Physical Society, vol. 93, no. 3, 2016.
[36] S. Xiao, S. A. Fernandes and A. Ostendorf, “Selective Patterning of ITO on flexible PET Substrate by 1064nm picosecond Laser,” Physics Procedia, vol. 12, pp. 125- 132, 2011. | ||
آمار تعداد مشاهده مقاله: 282 تعداد دریافت فایل اصل مقاله: 71 |